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Abstract
The rich diversity of angiosperms, both the planet’s dominant flora and the cornerstone of agriculture, is integrally intertwined 
with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical 
diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. 
Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture 
of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We 
argue that the hardware of plant genomes—both in content and in dynamics—has been shaped by selection for rather sub
stantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome 
size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of 
plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes 
and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw ma
terial for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or 
artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology 
and in modifying selected plants to better meet human needs.
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Introduction
The principle that plants share many commonalities in their 
underlying genetic “hardware” traces to at least Vavilov, bas
ing his law of homologous series in variation on observations 
that comparable variant forms tended to appear in different 
varieties of the same species, different species of the same 
genus, and different genera of the same family (Vavilov 1922).

How is underlying genetic commonality reconciled with 
the rich diversity of extant angiosperms? First, commonality 
is not identity. Most genes have recognizable homologs in 
most plant species, but with coding and/or regulatory se
quence differences ranging from minute (single nucleotide 
polymorphisms [SNPs]) to massive. Likewise, gene order 
along the chromosomes ranges from near-identity within a 
population [although even subtle differences may be of evo
lutionary importance by reducing gene flow (Rieseberg 
2001)] to barely discernible among distant taxa. The progres
sion of such divergence is by no means linear—for example, 
the genome of sorghum more closely parallels that of rice, 

separated by ∼100 million years, than that of maize, sepa
rated by approximately 12 million years (Swigonova et al. 
2004). Often, striking differences in genome structure of 
closely related taxa reflect punctuational consequences of a 
genome duplication, for example in the maize lineage (see 
below).

Second, similar hardware may use different software. The 
regulatory cues that determine gene expression are often 
short and easily mutable. Indeed, regulatory mutations may 
create interdependence that is a basis for the retention of du
plicated genes, for example by reciprocal loss of expression 
cues that make different members of a duplicated gene 
pair each essential in different tissues (Force et al. 1999, 
2005). We elaborate on this important dimension of (plant) 
diversity below.

Third, polymorphism determines the subset of genes that 
contribute to standing genetic variation within a taxon. Both 
random and nonrandom factors determine the persistence 
of gene polymorphism with functional consequences, the 
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former being heavily weighted in gene pools that have experi
enced evolutionarily recent genetic bottlenecks such as those 
of most major crops. Only the subset of genes in which func
tional polymorphism differentiates the progenitors of a study 
population are accessible by forward genetics, while reverse 
genetics scans most genes.

Thus, although botanical diversity is a focus of this paper, 
essential to its study has been commonality in the genetic 
hardware and software of plants. In 2 hypothetical genomes 
that differed by only a single nucleotide, the identical sur
roundings rather than the difference itself would inform 
its likely phenotypic consequences. Robust comparative 
genomics, distinctive in plants in accommodating recursive 
genome duplication (see below), enables information from 
facile models to be extrapolated across the plant phylogeny 
as at least an indicator of gene function. This principle has 
provided for tremendous leveraging of both genome se
quence and reverse genetics resources, with deep annota
tion and hard-won functional data for botanical models 
accelerating hypothesis formation in diverse taxa. Forward 
genetics also benefits from comparative genomics, although 
with comparisons among taxa confounded by factors that 
determine the persistence of polymorphism with functional 
consequences.

In the final scientific paper of an illustrious career, 
G. Ledyard Stebbins articulated “a plant evolutionist’s point 
of view . . . based on profound differences . . . between the 2 
kingdoms.” In particular, he highlighted the lack of a germline, 
propensity for inbreeding, and greater tolerance of diversity, 
particularly polyploidy, attributed to the fewer cellular struc
tures of plants than animals (Stebbins 1999). Little more than 
a year after his paper was published, Stebbins had died when 
the initial sequence of the first higher plant genome 
(Arabidopsis Genome Initiative 2000), followed 2 months la
ter by the human genome (Lander et al. 2001), kicked off a 
new era in comparative biology. This era has been enabled 
by technological improvements that made genome sequen
cing rapid and routine and empowered by CPUs sufficient to 
archive and sift voluminous digital data for grains of insight.

More than 2 decades hence, voluminous literature has ac
cumulated on the hardware and software of genomes, how 
these differ between and among plants and animals, and 
how they relate to diversity among and polymorphism with
in plant taxa. Here, we present a plant-centric view, reviewing 
the broad state of the field based on findings of and connec
tions among a selected subset of studies that focus on plant- 
specific features. The widespread application of genomic 
technologies, particularly in agriculture, make truly exhaust
ive coverage intractable. Overrepresentation herein of our 
own studies and others in our focal taxa reflects those we 
are best able to interpret and integrate, with no disrespect 
intended to the work of many others that would be similarly 
suitable. We have further stretched our writ to volunteer opi
nions about areas in which we see promise for future inves
tigations, an act of commission intended to stimulate 
second-level thinking by our colleagues and successors.

The hardware: using genome structure and 
composition to probe diversity
Robust DNA sequences provide digital access to the genome 
of each new organism, filling gaps in knowledge of evolution
ary history and the spectrum of botanical diversity. As more 
taxa are sequenced, diminishing returns are naturally realized 
in discovery of new genes and macroevolutionary events 
such as genome duplications. However, closely related taxa 
with less functional diversity may be favorable systems in 
which to identify causal genomic differences, just as subtle 
differences in beak shape related to diet of closely related 
finches contributed to the theory of natural selection 
(Darwin 1859).

An end in itself in that it comprises the entire hereditary 
information of an organism, a genome is also a means to 
other ends in providing improved tools, as summarized in 
Table 1. High-quality genome sequences have expedited for
ward genetics approaches to home in on the region of a cau
sal gene and reverse genetics approaches to identify causative 
variants. Dramatic improvement in both cost and through
put of sequencing has empowered “evolutionary genetics” 
to achieve critical mass as a complement to reverse genetics 
toward determining causative variants and added the poten
tial precision of genome-wide association study (GWAS) 
to the repertoire of forward genetics. Robust comparative 
genomics (section IV, below) enables hard-won functional in
formation about specific genes from forward, reverse, evolu
tionary, and/or association approaches to be extrapolated to 
newly sequenced genomes as at least an early indicator of 
gene function.

Forward genetics remains central in the botany toolbox, 
especially in crop genomes for which target traits tend to 
be complex (quantitative trait loci). Robust genome se
quences obviate the need for laborious “dart-throwing” ap
proaches by which were produced early genetic maps that 
guided sequence assembly. A variety of reduced representa
tion “genotyping by sequencing” approaches (Davey et al. 
2011) now permit one to routinely undertake whole-genome 
scans for trait mapping, and reference genomes expedite 
digital identification of precisely targeted diagnostic tools 
such as Kompetitive Allele Specific PCR (Semagn et al. 
2013) or simple-sequence repeat markers. Genetic maps 
based on voluminous SNPs permit anchoring of even small 
sequence contigs as well as orientation of those spanning a 
recombination event—for example, more than 2 million 
SNPs in 1,178 positions separated by recombinants anchored 
57,270 scaffolds each containing 5 or more mapped SNPs and 
collectively comprising 14% of the subject genome (Bowers 
et al. 2016). Such rich data also empower GWAS (Ozaki 
et al. 2002) that use physically dense marker sets to take ad
vantage of historical accumulations of recombinations in re
lating a phenotype to a gene(s) in a crop gene pool or natural 
population.

Reverse genetics has tremendously increased plant gene 
functional knowledge, in particular with many thousands 
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of genes identified using the Agrobacterium T-DNA as both a 
mutagen and a tag (Feldmann et al. 1989), taking advantage 
of high throughput methods (Alonso et al. 2003) to produce 
extensive collections of mutant alleles. Historically, the ability 
to generate phenotypically interesting mutations has greatly 
exceeded the ability to identify causative sequence variants. 
Easily identifiable “tags” such as T-DNA or various transpo
sons (Fladung 2016) and methods for efficient searches for 
point mutations (McCallum et al. 2000; Colbert et al. 2001; 
Till et al. 2003; Henikoff et al. 2004) have mitigated con
straints to identifying causative plant gene mutations. 
Knockout mutant populations generated by means such as 
fast neutron mediated mutagenesis that cause mostly dele
tions of DNA fragments ranging in size from a few base pairs 
to more than 30 kb (Bruggemann et al. 1996; Li et al. 2001, 
2002) can readily be sequence tagged even by low-coverage 
methods, although tolerating far fewer mutations per gen
ome (Belfield et al. 2012) than EMS populations in which it 
is more challenging to discern (single-nucleotide) mutations 
with confidence [e.g. (Addo-Quaye et al. 2018)].

Naturally occurring alleles, “biased” in informative ways by 
the action of selection, have become a powerful complement 
to both forward and reverse genetics. The ability to generate 
draft genome sequences enables comprehensive searches for 
naturally occurring alleles that are statistically associated 
with a trait, incorporating elements of both forward and re
verse genetics. Demonstrated in 2005 (Ozaki et al. 2002), such 
GWAS have been widely used, taking advantage of the histor
ical accumulation of recombination events since the evolu
tion of an allele. Sequencing of large germplasm collections, 
such as many collected and phenotyped for numerous crops 
by CGIAR centers, reveals much of the spectrum of naturally 
occurring alleles in a gene pool, also evaluating associations 
of the more abundant ones with traits [e.g. (Morris et al. 
2013)]. In addition to de novo searches for trait association, 
phenotypic and passport information for such collections 
can be of value in testing hypotheses, for example, regarding 
the geographic distribution of specific candidate alleles 
(Cuevas et al. 2016).

Germplasm drawn from cultivated gene pools derived re
cently from small numbers of progenitors, or prepared by 
crossing strategies that combine broad samples of diversity 
with appreciable linkage disequilibrium (Yu et al. 2008), har
nesses naturally occurring alleles and recombinations to im
prove the precision of trait mapping while mitigating the 
propensity of GWAS for false-positive associations [e.g. 
(Buckler et al. 2009)]. Such a “nested association mapping” 
approach is an attractive means to investigate effects of nat
urally occurring alleles that are too rare to obtain a significant 
GWAS signal, in that biparental populations placing the allele 
in hundreds of progeny offer higher statistical power.

While commonality of plant gene content has permitted 
extensive leveraging of reverse genetics findings across taxa, 
extrapolation of forward genetics data is constrained by ran
dom and nonrandom factors that affect the persistence of 
functional polymorphism, together with statistical con
straints that limit quantitative trait loci mapping by either bi
parental methods [e.g. (Lander and Botstein 1989)] or GWAS 
(Yu et al. 2008). For example, the notion that crosses between 
wild and elite forms of different crops may segregate for con
vergent alleles at corresponding loci (Paterson et al. 1995) has 
had both supporting (Lin et al. 2012) and conflicting evi
dence (Tang et al. 2013). Nonetheless, across numerous traits 
and taxa, meta-analysis of the collected literature empow
ered by robust comparative genomics is informative in re
vealing “hotspots” for discovery of quantitative trait loci in 
elite gene pools and in providing diagnostic tools for such 
hotspots.

Exceptions to the commonality of genetic hardware often 
offer hypotheses about potential causal agents of specific 
traits. Genome sequences abound with examples of copy 
number amplifications that are correlated with distinctive 
features of particular plant taxa. Brassica napus, or canola, 
has experienced massive expansion of oil biosynthesis genes 
in an oilseed plant (Chalhoub et al. 2014) at almost double 
the number annotated in soybean (Schmutz et al. 2010) 
and more than double those in oil palm (Singh et al. 2013). 
Striking differences in the cell walls of monocots and dicots 

Table 1. Genome-enabled genetics approaches in plants. Most plant genetics studies utilize 1 or more of 4 broad approaches, each suitable in 
different contexts, with different strengths and limitations, and requiring different resources

Genetics  
approach

% (subset) of gene set accessed Rate (source) of false 
positives?

Rate (source)  
of false negatives?

Resolution (level) of  
DNA characterization

Resources required

Forward Low  
(polymorphic in single cross)

Low Medium  
(small population 

size)

Low  
(10 cM marker spacing

Mapping populations  
(BC, F2, DH, RIL, NIL)

Reverse High  
(mutable resulting in 

phenotype)

Low Medium  
(subtle phenotypes)

High  
(gene space sequence)

Mutant collection

Evolutionary Medium  
(polymorphic in species)

High  
(relatedness of genotypes)

Medium  
(rare alleles)

High  
(gene space sequence)

Diversity panel  
(core or mini-core 

collection)
GWAS Medium  

(polymorphic  
in species subset)

High  
(relatedness of genotypes)

Medium  
(rare alleles)

Medium  
(deep SNP coverage)

Diversity panel  
(gene pool sample)

GWAS, genome-wide association study; SNP, single nucleotide polymorphism.
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(McCann and Roberts 1991; Carpita and Gibeaut 1993) are 
correlated with abundance of CesA/Csl cell wall biogenesis 
gene superfamily members, Arabidopsis containing a single 
Group F GT31 gene, whereas sorghum and rice contain 6 
and 10, respectively (Paterson et al. 2009). Contraction or 
complete loss in tomato of several cytochrome P450 subfam
ilies associated with toxic alkaloid biosynthesis (Sato et al. 
2012) may be related to the importance of attracting verte
brate frugivores to disperse seeds via fleshy fruits (Howe and 
Smallwood 1982). Copy number amplifications contribute to 
the evolution of herbicide resistance in weeds of genetically 
engineered crops (Patterson et al. 2018), potentially with 
multiple origins of such resistance (Fernández et al. 2013), at
testing to the speed at which this mechanism permits a plant 
to respond to new selective pressure. Some such rapid re
sponses appear to be enabled by heritable extranuclear 
DNA (Molin et al. 2020).

While the commonality of genetic hardware among plants 
is a useful generalization, formation of new genes and loss of 
existing ones are each continuous, with the content of an ex
tant genome ranging from taxonomically widespread, highly 
conserved genes to taxonomically restricted “orphan” genes. 
Percentages of orphan genes in a genome range widely, with 
5% to 15% being typical (Arendsee et al. 2014) and often de
clining as additional closely related genomes are sequenced. 
Age stratification found 4% of A. thaliana genes to be species 
specific, 61.3% to date to the origin of eukaryotes (30.3%, an 
estimated 1.6 billion years ago) or cellular organisms (31.0%, 
2.52 billion years ago), and varying percentages shared with 
ascending hierarchical taxonomic groups, for example 0.8% 
originating with the Arabidopsis genus and 3.3% with the 
Brassicaceae family (Arendsee et al. 2014).

In that their comparative analysis is constrained by defin
ition, orphan genes are prone to artifactual annotation; how
ever, various types of evidence attest to subsets having 
important functions. For example, sorghum genes containing 
1 functional domain that was absent from rice encoded alpha 
kafirins that account for most sorghum seed storage protein 
(Paterson et al. 2009) and were found to correspond to maize 
zeins (Xu and Messing 2008). A recent analysis of 3,553 
orthogroups (totaling 5,456 genes) found, with very few ex
ceptions, that those comprised solely of species specific (in 
the example, P. alba) genes in which multiple genes showed 
molecular signatures of positive selection had features asso
ciated with disease resistance (Kong et al. 2023).

The software: plant gene regulation in light of 
genome structure and lifestyle
Gene expression translates the genome’s hardware into mes
senger RNAs and noncoding RNAs and ultimately generates 
the diversity of plant cell types and tissues and their finely 
tuned responses to environmental cues and challenges. As 
in animals, epigenetic marks reinforce patterns of cell-type 
and condition-specific gene expression and contribute to 
appropriate transcriptional responses (Sullivan et al. 2014; 

Schmitz et al. 2022). Accessible chromatin regions (i.e. regu
latory DNA, ACRs) are enriched for trait-associated genetic 
variation implicated in domestication and evolution 
(Maurano et al. 2012; Sullivan et al. 2014; Rodgers-Melnick 
et al. 2016). Although researchers have learned some of the 
rules that govern the transcription of genomic information 
in plants, there is much left to be discovered.

Plant gene regulation research lacked the unified, compre
hensive, and well-funded ENCODE and ModENCODE 
projects that annotated transcripts, transcription factor 
binding sites, histone modifications, ACRs, and long-range 
regulatory interactions for many human and animal cell 
lines and tissues (ENCODE 2012; Sanyal et al. 2012; 
Thurman et al. 2012). However, during the past decade, the 
methods developed and employed in these projects and 
other genome-scale interrogations of animal genomes 
(Patwardhan et al. 2009; Arnold et al. 2013; Gasperini et al. 
2019; Klein et al. 2020) have been adapted for use in plants 
in many studies (Rodríguez-Leal et al. 2017; Ricci et al. 
2019; Jores et al. 2020, 2021, 2023; Deng et al. 2023; Tan 
et al. 2023). Taken together, these studies have identified 
ACRs, histone marks associated with various activity states, 
transcription factor binding sites, and candidate long-range 
regulatory interactions in diverse plant genomes (Schmitz 
et al. 2022; Jores et al. 2023). Too often, however, data inter
pretation and conclusions appear to be driven by the deep 
existing knowledge of gene regulation mechanisms in ani
mals without sufficient consideration given to the distinct 
features of plant genomes and plant life that might be rele
vant to understand gene regulation in these sessile and large
ly autotrophic organisms.

Plant and animal genomes differ strikingly in gene size and 
prevalence of transposable elements, both features of likely 
importance for gene regulation. The maize and human gen
omes are of comparable size (2.4 and 3 Gb, respectively), yet 
the average protein-coding gene size is ∼4,000 bp in maize 
and approximately 32,000 bp in human. This 8-fold differ
ence is largely due to the enormous size of introns in human 
(human, mean length 6,174 bp, median 1,590 bp in protein 
coding transcripts; maize, mean length 699 bp, median 
145 bp in protein coding transcripts). In human, the genomic 
“real estate” occupied by introns and intronic ACRs is far 
greater than in maize (Fig. 1) and impacts the distances 
that need to be spanned between intronic enhancer ele
ments and their target transcription start sites (TSS; human, 
distance of 8,530 intronic ACRs to nearest TSS: mean 
35,800 bp, median 11,501 bp; maize, distance of 350 intronic 
ACRs to nearest TSS: mean 8,074 bp, median 4,118 bp).

The first genome-wide plant regulatory landscapes estab
lished in A. thaliana (Zhang et al. 2012; Sullivan et al. 2014) 
show marked differences in the genomic distribution of 
ACRs compared with those in animals. In A. thaliana, less 
than 5% of ACRs reside in introns, about 37% reside within 
400 bps of a TSS, and another 37% were classified as inter
genic or distal (with the latter designation not well suited 
to this compact genome). In the equally compact and 
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gene-rich genome of the fly Drosophila melanogaster, 31% of 
ACRs reside in introns, 12% reside near a TSS, and 29% were 
classified as intergenic (Thomas et al. 2011). In human, the 
2012 ENCODE study reported that 51% of ACRs reside in in
trons, 3% near a TSS, and 41% were classified as distal in 125 
cell lines and tissue samples (Thurman et al. 2012). A 2020 
ENCODE study improved on the latter work by vastly in
creasing the number of analyzed samples and broadening 
the coverage of primary cells and tissues (Moore et al. 
2020). Moreover, the study integrated chromatin accessibil
ity with histone modification marks on flanking nucleosomes 
and annotated CTCF-bound elements. This approach en
ables ACR annotation as promoters (high H3K4me3 signal, 
within 200 bp of a TSS), proximal (high H3K27ac, low 
H3K4me3, within 2 kb of a TSS) or distal enhancers (high 
H3K27ac, low H3K4me3, outside 2 kb of a TSS), insulator 
or looping elements (CTCF-bound), and elements of un
known function (high H3K4me3, not within 200 bp of a 
TSS). Using these annotations, ∼4% of ACRs are promoter- 

like, 15% are proximal enhancer-like elements within 2 kb 
of a TSS, and 71% are distal enhancer-like elements, many 
of which are residing in introns. In stark contrast to human, 
in maize, 29% of ACRs reside within 2 kb of a gene and only 
45% are classified as distal ACRs residing outside of this inter
val (Ricci et al. 2019). Moreover, the majority of distal ACRs 
(51.2%) are depleted of flanking histone modifications, 10.2% 
show H3K9/K27/K56 acetylation, and 27.5% show histone 
modifications consistent with transcribed genes, possibly re
presenting unannotated open reading frames.

The absence of the canonical flanking histone modifica
tions marking active enhancers in animals (high H3K 27ac, 
high H3K4me1, low H3K4me3) is consistent with the absence 
of functional enhancer RNAs in plants. Enhancer RNAs are 
short (∼200 nt-2 kb) and short-lived transcripts that are per
vasively and bidirectionally transcribed from active enhan
cers (Kim et al. 2010; Arner et al. 2015; Harrison and Bose 
2022). They interact with the histone modifying enzyme 
complexes Polycomb Repressive Complex 2 and histone 

Figure 1. Plant genomes—the hardware—have been shaped by frequent polyploidization events (left figure panel) via hybridization or duplication. 
Newly formed polyploids face chromosome segregation and gene dosage challenges, leading to many aborted lineages. In a small subset of lineages, 
selection acts on the variation created via transposition, gene conversion, and fractionation mutagenesis, generally with reduction of chromosome 
number such that a diploid-like state is restored. Maize provides a particularly good example, now having the same chromosome number as sor
ghum despite having experienced genome duplication since their divergence approximately 20 million years ago. This cycle has consequences for 
plant genome structure and gene regulation—the software—as shown here for maize and human (right figure panel). Although both genomes are 
of comparable size and contain similar numbers of genes, human genes are much longer, largely because their introns are 10 times longer (pie charts, 
top). Compared with humans, maize genes and the maize regulatory landscape appear much more compact, possibly reducing the need for “ex
pression domains” enabled by the human insulator protein CTCF (middle 2 panels). Although long-distance regulatory interactions exist in plants, 
including between the maize tb1 gene and its transposon-derived enhancer, these interactions appear to be generally less complex than those ob
served in humans, as illustrated here with the beta-globin locus control region. The reduced complexity at this regulatory level is consistent with 
fewer cell types and the indeterminate, environmentally responsive mode of development in maize vs human (bottom panel). Shorter introns and a 
generally more compact and less complex regulatory landscape may render plant genomes less susceptible to disruption by the mutational pro
cesses following polyploidization.
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acetyltransferases CREB binding protein/p300 to inhibit 
the deposition of repressive H3K27me3 histone marks and 
promote the deposition of activating H3K27ac histone 
marks, respectively, thereby maintaining enhancer chroma
tin accessibility and promoting further eRNA synthesis 
(Bose et al. 2017). Both enhancer RNAs and H3K27ac marks 
are used to annotate active animal enhancers (Andersson 
et al. 2014; Core et al. 2014; Wu et al. 2014; Moore et al. 
2020). Analyses of nascent bi-directionally transcribed RNAs 
in A. thaliana and maize yielded conflicting results for 
(Lozano et al. 2021) and against the widespread existence 
of enhancer RNAs (Erhard et al. 2015; Hetzel et al. 2016; 
McDonald et al. 2023). A recent A. thaliana study revisited 
this controversy by inhibiting exosome-dependent degrad
ation of unstable nascent RNAs and finding only 113 instances 
of bi-directionally transcription, of which 78 were intronic, and 
the remaining 35 were intergenic (Thieffry et al. 2020). Thus, 
plants appear to use different mechanisms than animals to 
maintain enhancer chromatin accessibility and activity or at 
least additional ones (McDonald et al. 2023).

Taken together, there appear to be profound differences in 
ACR spacing, ACR genomic context, and ACR histone mod
ifications between human and maize. These differences may 
relate to another notable difference between animal and 
plant genomes: the absence of the transcriptional repressor 
CTCF in plant genomes (Fig. 1). In animals, CTCF is involved 
in regulating the 3D structure of chromatin and forming 
loops and marking TAD (Topologically Associating 
Domain) boundaries. CTCF-bound TAD boundaries function 
as insulators, separating regulatory units within which en
hancers and promoters interact (Lupiáñez et al. 2015). In an
imals and human, disruption of TAD boundaries can lead 
to inappropriate interactions and profound misregulation 
(Okhovat et al. 2023). Although large plant genomes exhibit 
TAD-like structures, long-range chromatin interactions can 
span these structures (Dong et al. 2017; Liu et al. 2017; 
Mascher et al. 2017; Doğan and Liu 2018). As neither the pro
tein(s) nor any sequence motif(s) underpinning boundary ac
tivity are known in any plant (Heger and Wiehe 2014), it 
remains unresolved how plant TAD-like structures arise 
and how relevant they are for gene regulation (Domb et al. 
2022; Schmitz et al. 2022). Given the differences in spacing 
and genomic context of maize and human ACRs, the need 
for strictly enforcing insulation of long-distance enhancer- 
promoter interactions might be less profound in plants.

It is tempting to speculate that some of the described dif
ferences arise in part from the indeterminate development of 
plants that puts strikingly different demands on gene regula
tion. Throughout their life, plants continue to form new or
gans in response to environmental cues, which requires close 
and constant integration of environmental response and de
velopmental gene expression pathways in ways simply not 
present in fly, mouse, and human. This constant integration 
might not be compatible with the strict expression boundar
ies observed in these animals; instead, it likely requires rapid 
rewiring across both long- and short-distance regulatory 

interactions. In human, of the nearly 3 million union ACRs 
detected in 125 diverse samples, nearly 1 million were specific 
to 1 sample, nearly 2 million in 2 or more samples, and only 
3,692 ACRs were detected in all samples (Thurman et al. 
2012). ACRs in human are so specific to cell and tissue 
type that their changing patterns and decreasing numbers 
along developmental trajectories can be used to reconstruct 
cell fate and lineage relationships from embryonic stem cells 
to terminal fates (Stergachis et al. 2013). Although direct 
comparisons are challenging because far fewer plant cell 
and tissue types have been studied in this way, ACRs in A. 
thaliana and maize appear to be far less dynamic—i.e. cell- 
type or condition-specific—than those in human. Across 
13 diverse A. thaliana samples that detected nearly 47,000 
union ACRs, only about 2,000 ACRs were specific to 1 sample 
while nearly 45,000 ACRs were detected in 2 or more samples 
(Sullivan et al. 2019). In maize, only 15% to 21% of the distal 
ACRs accessible in leaf tissue were inaccessible in inflores
cence tissue (Ricci et al. 2019). Although single-cell genomics 
studies in both A. thaliana and maize have yielded evidence 
for larger numbers of dynamic, cell-type-specific ACR 
(Dorrity et al. 2021; Marand et al. 2021) cell and tissue iden
tity appears less rigidly engrained in the regulatory landscape 
of plants than in animals.

However, rigid cell fate determination through altered pat
terns of ACRs might be less required in plants. Unlike animal 
development, plant development does not involve move
ment of cells because cell identity and lineage are established 
by cell division and position (van den Berg et al. 1995). 
This developmental mode likely minimizes the role of 
cell-autonomous gene regulation and cell-type-specific epi
genomes and allows for scenarios in which transcription fac
tors and other molecules expressed in a particular cell type 
can act in a concerted fashion with those in neighboring cells. 
It is tempting to speculate that the less rigid (i.e. less cell and 
tissue-specific) regulatory landscapes found in plants con
tribute to their capacity to regenerate fully functional plants 
from excised tissue or protoplasts (Gaillochet and Lohmann 
2015) because there are fewer ACRs that have to be reo
pened to turn terminally differentiated plant cells into 
stem-cell-like ones. Moreover, coming back to Stebbin’s ob
servations about animal and plant kingdom differences, there 
are likely many fewer distinct cell types in maize than in hu
man or mouse (Fig. 1).

The relative stasis of plant regulatory landscapes may also 
reflect another phenomenon: the constant integration of en
vironmental cues with developmental gene expression may 
require that a large number of ACRs are poised for activation, 
i.e., occupied by trans-acting factors, without active tran
scription occurring until a signal is perceived. This mode of 
transcriptional regulation, occurring at enhancers but also 
immediately downstream of the transcription start site 
with paused, transcriptionally engaged Pol II molecules 
awaiting activation, allows for fast response times and is of
ten observed for developmental and environmental response 
genes (Boehm et al. 2003; Creyghton et al. 2010; Xi et al. 
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2011). For example, in A. thaliana, treatment with the growth 
hormone auxin results in differential regulation of over 1,200 
genes (Lewis et al. 2013); however, accessibility increases 
for only 155 ACRs and decreases for another 167 ACRs 
(Sullivan et al. 2019), in part because auxin-responsive factors 
are DNA-bound irrespective of auxin treatment. A greater 
fraction of poised ACRs in plants than in human would result 
in a comparatively more static regulatory landscape and a 
weaker correlation between chromatin accessibility and 
nearby gene expression. Alternatively, the relative stasis of 
plant regulatory landscapes might be explained by the large 
expansion of plant transcription factor (TF) families (Shiu 
et al. 2005), with their repressive and activating family 
members recognizing very similar motifs. While repressive 
and activating TFs of a family may trade places upon an en
vironmental or developmental stimulus, this dynamic 
change would be largely invisible at the level of ACRs.

Stebbins highlighted another plant-specific phenomenon 
—greater tolerance of polyploidy—that is of consequence 
for the genome structure of angiosperms and gene expres
sion regulation. Polyploidy is well tolerated across maturing 
tissues of individual plants (endoreduplication) (Lang and 
Schnittger 2020), and ploidy changes occur frequently along 
plant lineages (Song and Chen 2015), as discussed in detail 
below. There is very little accounting in most gene expression 
studies for the fact that commonly assayed tissues like leaves 
and roots are highly divergent in ploidy (Bhosale et al. 2018; 
Lang and Schnittger 2020). Single-cell expression studies in 
A. thaliana roots suggest that gene expression overall 
drops with increasing ploidy and maturity of root hair cells, 
but the expression of cell-type-specific genes increases 
(Jean-Baptiste et al. 2019). It is unknown to what extent 
the many additional copies contribute to gene expression 
in endoreduplicated cells and how regulatory landscapes 
and interactions among regulatory elements may change in 
response to endoreduplication.

The frequent changes of ploidy across plant lineages may 
contribute to shorter genes, shorter introns, less pronounced 
TAD structures, fewer distal enhancers, and higher trans
poson content and activity in plants (Fig. 1). Increases in ploi
dy require rapid dosage compensation and rapid divergence 
(Conant and Wolfe 2008). Plants have mastered both 
through RNA-mediated DNA methylation (Song and Chen 
2015) and through high transposon activity (Flagel and 
Wendel 2009). Of course, transposon activity has remodeled 
both plant and animal genomes and contributed to evolu
tionary novelty (Flagel and Wendel 2009; Lynch et al. 2015) 
and domestication traits (Studer et al. 2011). Nevertheless, 
the frequent reshuffling of plant genomes during the course 
of their deep evolutionary history through cycles of polyploi
dization and returns to a diploid state might contribute to 
their shorter genes, their more compact distance distribution 
of regulatory elements, their less cell type–specific land
scapes, and their higher genomic transposon content, all 
which favor local gene regulation environments and disfavor 
the highly intricate enhancer architecture and large distances 

observed in the animal HOX gene clusters (Montavon and 
Duboule 2013) or the beta-globin locus control region 
(Levings and Bungert 2002) (Fig. 1).

In summary, we argue that the hardware of plant genomes 
—both in content and in dynamics—has contributed to ra
ther substantial differences in gene regulation from that in 
animals as exemplified by maize and human, organisms of 
comparable genome size and gene number. The mechanistic 
underpinnings of several of the phenomena discussed here 
such as insulation and TAD formation, maintenance of en
hancer accessibility, ACR presence, and gene expression in 
endoreduplicated cells remain unknown and will require 
technological innovation to be resolved. Specifically, we 
need to move beyond averaging large numbers of small frag
ments to infer chromatin states and element activity as we 
do in the current chromosome conformation and accessibil
ity assays. We favor recently developed single-molecule, long- 
read assays like Fiber-seq and others (Abdulhay et al. 2020; 
Stergachis et al. 2020), which can capture ACRs, TF binding 
sites, nucleosome position, Pol II footprints, and cytosine 
methylation along 20-kb fibers. The cited methods use a 
DNA N6-adenine methyltransferase to methylate accessible 
adenines and long-read sequencing to detect this modifica
tion at nucleotide resolution, in addition to cytosine methy
lation. Adenine methylation is extremely sparse in plants 
(Kong et al. 2022), contrary to earlier reports. Assessing 
gene regulatory landscapes in this way eliminates the 
need to infer activity states and co-regulation of neighboring 
regulatory elements (Pliner et al. 2018) and eliminates 
bias from interpreting data across different assay types. 
Single-molecule regulatory landscapes will give insight into 
the regulatory activity of formerly inaccessible, highly repeti
tive regions, including the large regions of plant genomes 
occupied by transposons, and they will capture the stochas
ticity of TF occupancy and nucleosome positioning across 
many fibers corresponding to a large genomic interval. As 
long-read sequencing becomes more efficient (and thus 
cheaper) and capable of even longer reads, the promise of 
visualizing and understanding gene regulation at the level 
of single molecules across diverse plants and diverse plant 
cell types cannot be overstated.

A singular history of polyploidization
Stebbins’ appreciation of the importance of polyploidy in 
plant evolution, albeit considerable, was an underestimate. 
Building on early clues from genetic mapping (Kowalski 
et al. 1994; Paterson et al. 1996), its genome sequence re
vealed that even the relatively small 5-chromosome genome 
of A. thaliana, chosen as the first plant genome to be se
quenced in part for its simplicity, retained traces of 2 dupli
cations and 1 triplication (Blanc et al. 2000; Arabidopsis 
Genome Initiative 2000; Lynch and Conery 2000; Paterson 
et al. 2000; Vision et al. 2000; Bowers et al. 2003). With the 
further discovery that the first monocot genome sequence, 
rice, also confirmed clues from cytology (Lawrence 1931) 
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and genetic mapping (Kishimoto et al. 1994; Nagamura et al. 
1995) of genome duplication (Goff et al. 2002), the study of 
duplicated gene relationships advanced from an isolated spe
cialization to an essential element of genetic, evolutionary, 
and developmental investigations in higher plants.

In contrast to algorithms refined in microbes and/or ani
mals to discern often-faint signal of ancient genome duplica
tions (Bailey et al. 2002, 2004; Cheung et al. 2003a, 2003b; 
Tuzun et al. 2004), consideration of multiple colinearity 
was necessary to take full advantage of the relatively strong 
signals of, often recursive, plant genome duplications. For ex
ample, if a chromosomal region is preserved in 3 genomes (A, 
B, and C), then pair-wise predictions would combinatorially 
yield 3 inferences about ancestral gene repertoire and order 
(A-B, B-C, A-C). Polyploidy in 1 or more of the 3 genomes 
multiply the number of comparisons accordingly. To retrieve 
maximal information, both consequences of paleopolyploidy 
within a genome and comprehensive alignments of multiple 
paleopolyploid genomes to one another, require related pair
wise colinear segment to be combined into one inferred or
der (A-B-C). For example, multi-alignment of A. thaliana, 
Populus trichocarpa, and Carica papaya genomes revealed 
evidence of previously unknown “triplicated” structure that 
was validated empirically by comparison to the Vitis genome 
(Tang et al. 2008), a phylogenetic outgroup that had not ex
perienced any more recent polyploidy.

The more than 1,600 green plant genomes now available, 
representing over 800 species, have yielded a relatively 
good (though by no means complete) history of plant gen
ome duplications (Fig. 2) and knowledge of their conse
quences, as follows: 

1) Phylogenetic tree topologies for hundreds of putatively 
orthologous expressed sequence tagged (EST) se
quences support the occurrence of 1 genome duplica
tion in the common ancestor of seed plants, and 
another in the common ancestor of angiosperms 
(Jiao et al. 2011), with the lineage of only 1 extant 
angiosperm, Amborella trichopoda, not known to 
have preserved additional paleopolyploidy events 
(Amborela Genome Project 2013);

2) In the monocots, phylogenetic analysis of nested syn
teny blocks indicates 1 genome duplication in a com
mon ancestor of grasses and commelinids, upon 
which additional duplications have been superim
posed in many lineages (e.g. 1 in oil palm, 2 in grasses, 
possibly 3 in banana) (Jiao et al. 2014) and with a host 
of still more recent duplications in some, for example, 
allopolyploidy in a common Miscanthus-Saccharum 
ancestor ∼3.8 to 4.6 million years ago (Kim et al. 2014);

3) In a common ancestor of eudicots, colinearity informa
tion revealed an ancient event first discerned in 
Arabidopsis (Bowers et al. 2003) and clearly deter
mined to be a genome triplication in the grape genome 
(Jaillon et al. 2007), upon which a host of additional lin
eage specific events have been superimposed;

4) While most paleopolyploidizations are duplications 
(i.e. forming tetraploids), several triplications have 
been inferred to form hexaploids, for example, in a eu
dicot ancestor (Jaillon et al. 2007) and twice consecu
tively in the tomato lineage (Sato et al. 2012); and a 
decaploid may have been formed by a complex event 
in the cotton lineage involving multiple polyploidiza
tions plus hybridization in short succession (Wang 
et al. 2016);

5) Plant genome duplication may not be merely episodic 
but cyclic in the sense that some fitness benefits grad
ually deteriorate and favor recursive polyploidization 
(Chapman et al. 2006). However, the interval between 
successive events varies widely even in closely-related 
taxa, for example, with nearly 100 million years be
tween a pan-grass duplication and the formation of 
Sorghum halepense (Paterson et al. 2020), but only 
∼1 million years between an allopolyploidy shared by 
Miscanthus and Saccharum, and a Saccharum-specific 
autoploidy (Kim et al. 2014);

6) Genome duplication is a punctuational event in the 
evolution of a lineage, triggering changes such that 
closely related genomes differing by a duplication 
may be less similar to one another than much more 
ancient genomes of common ploidy. Study of recently 
formed natural polyploids (Paterson et al. 2012; 
Chalhoub et al. 2014; Liu et al. 2014; Chen et al. 
2016; Zhuang et al. 2019) and 1 synthetic polyploid 
(Zhuang et al. 2019) reveals macromolecular processes 
similar to those well known in synthetic polyploids, in
cluding loss and restructuring of low-copy DNA se
quences (Song et al. 1995; Feldman et al. 1997; Liu 
et al. 1998; Ozkan et al. 2001; Shaked et al. 2001; 
Kashkush et al. 2002; Ozkan et al. 2002; Pires et al. 
2004), activation of genes and retrotransposons 
(O’Neill et al. 2002; Kashkush et al. 2003; Fontdevila 
2005), gene silencing (Chen and Pikaard 1997a, 
1997b; Comai et al. 2000; Lee and Chen 2001) and out
right loss (Langham et al. 2004; Freeling 2009; Schnable 
et al. 2010), and subfunctionalization of gene expres
sion patterns (Adams et al. 2003; Adams et al. 2004; 
Adams and Wendel 2005).

7) Modern chromosome numbers provide little informa
tion about the history of polyploidy in a lineage, as 
chromosome numbers tend to return to a narrow 
range following polyploidization, often via joining 
of homoeologous chromosomes near their termini 
(Wang et al. 2014). For example, the 5 chromosomes 
of A. thaliana are thought to trace to a total of 84 an
cestral chromosomes (Wang et al. 2014). Reciprocal 
gene loss in different polyploid individuals or subpo
pulations, leading to a special case of Bateson– 
Dobzhansky–Muller incompatibility (Werth and 
Windham 1991), may favor survival of lineages with 
low chromosome numbers (Bowers and Paterson 
2021).
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A natural question is whether the propensity of plants for 
genome duplication may have contributed to their evolu
tionary success. Duplication of existing genes is thought to 
be a primary source of genetic material available for evolu
tion of genes with new functions (Taylor and Raes 2004), 
and a long-held hypothesis has been that polyploidy is an en
gine for the evolution of genetic diversity by facilitating 
“functional divergence” of duplicated genes. Duplication of 
an entire genome at once retains stoichiometric balance be
tween its constituents (Birchler and Veitia 2007) and has long 
been recognized as less disruptive to the phenotype and via
bility than duplication of only a subset such as a single 
chromosome (Blakeslee et al. 1920). Following duplication, 
1 member of a gene pair may be free to experience function
al divergence, acquiring unique functionality [neo- 
functionalization, (Stephens 1951; Ohno 1970)] or the 2 
copies subdividing ancestral functions, for example, by recip
rocal loss of regulatory cues that render expression of differ
ent copies specific to different tissues [subfunctionalization 

—(Lynch and Force 2000)], with the fitness of the organism 
insulated by the homeolog. However, in that endoreduplica
tion is well tolerated across maturing tissues of individual 
plants as noted above, it remains an open question whether 
expression-based neo- or subfunctionalization associated 
with polyploidy [e.g. (Adams et al. 2003, 2004; Adams and 
Wendel 2005)] is a striking response to a newly duplicated 
nucleus or merely a previously undetected adaptation to 
the frequent occurrence of many additional gene copies.

While diverse examples associate polyploidy with broader 
zones of adaptation (Kiedrzynski et al. 2021) and striking 
phenotypic changes such as the seedborne epidermal fibers 
of cotton (Jiang et al. 1998; Paterson et al. 2012), genomic 
data have also raised questions about the classical “functional 
divergence” model. For example, if a primary advantage of 
polyploidy is the opportunity for the evolution of genes 
with new functions, then patterns of genetic diversity among 
strains within paleopolyploid taxa might reveal footprints of 
selection that are consistent with duplicated genes being 

Figure 2. A brief history of plant genome duplication, illustrated in selected taxa. Genome duplication has been central to evolution in plants, ar
guably to a greater degree than in any other taxon. Duplication of regulatory genes important to seed and flower development appears to be con
centrated around 319 and 192 million years ago (MYA) (Jiao et al. 2011): the former, roughly coincident with continental coalescence (Rogers and 
Santosh 2004), suggests a genome duplication in a common ancestor of seed plants; the latter, roughly coincident with continental dispersal (Rogers 
and Santosh 2004), preceded the diversification of angiosperms. While 1 basal angiosperm, Amborella trichopoda, has not preserved further duplica
tions (Amborela Genome Project 2013), others have [e.g. (Chaw et al. 2019; Chen et al. 2019)]. Early duplication events also shaped the eudicot 
(Bowers et al. 2003; Jaillon et al. 2007) and monocot (Jiao et al. 2014) lineages. Genomic analyses have revealed many additional prehistoric duplica
tions (Goff et al. 2002; Paterson et al. 2004; Schmutz et al. 2010; D’Hont et al. 2012; Sato et al. 2012; Kim et al. 2014), the most affected lineage being 
that of Brassica with 36-fold multiplication relative to the angiosperm common ancestor, plus an additional post-Neolithic polyploid formation 
between extant diploids (Chalhoub et al. 2014). Indeed, genus-specific polyploid formations led to some primary cultigens, for example in 
Arachis (Zhuang et al. 2019), Gossypium (Paterson et al. 2012), and Medicago (Shen et al. 2020); widespread invasives, for example, in sorghum 
(Paterson et al. 2020), and abundant species, for example, in Oryza (Zou et al. 2015). Selected outgroups are depicted to delineate timing of salient 
events. Timing of all events is based on indicated citations, and variation in estimation methods together with resolution of the figure make these 
timings approximate—readers should refer to original citations for precise estimates.
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relatively free to acquire unique functionality. Contrary 
to this prediction, SNPs encode less radical amino acid 
changes in genes for which there exists a duplicated copy 
at a “paleologous” locus, than in “singleton” genes among 
both Arabidopsis ecotypes and Oryza subspecies (Chapman 
et al. 2006). While this does not preclude the possibility 
that important adaptations have occurred by functional di
vergence of duplicated genes, it suggests that there may 
also be a population of genes in which fitness benefits accrue 
to functional buffering, consistent with remarkably long dur
ation that duplicated yeast genes continue to compensate 
one another (Gu et al. 2003).

Organisms continuously require genetic variation to adapt 
to constantly fluctuating environments, yet genome duplica
tions are episodic—in lineages that do not preserve whole 
genome duplications for long time periods, diverse mechan
isms have provided the raw genetic material for adaptation. 
Sorghum and rice, which have not experienced whole gen
ome duplication in an estimated 98 million years (Wang 
et al. 2015), preserve relatively more SNPs in tandem than 
paralogous duplicated genes (Guo et al. 2019). However, 
maize, which experienced genome duplication shortly after 
divergence from a common ancestor shared with sorghum 
as recently as 12 million years ago (Swigonova et al. 2004), 
shows SNP enrichment in its large supply of paralogous du
plicates. The proportion of genes showing signatures of re
cent positive selection is higher in small-scale (tandem and 
transposed) than genome-scale duplicates in sorghum, but 
the opposite in maize (Guo et al. 2019).

Even complex biochemical pathways, which might be fa
vored by stoichiometric balance resulting from whole- 
genome duplications, in at least 1 case did not evolve from 
available whole-genome duplicates but came together subse
quently from a series of single-gene duplicates. For example, 
genome duplication in a common ancestor of grasses 
putatively provided “spare” copies of genes for the entire 
photosynthetic pathway; however, the evolution of C4 
photosynthesis from C3 ancestors used few if any of these, 
instead involving single-gene duplications (Wang et al. 2009).

Paleopolyploidy results in islands of conserved sequence 
duplicated in parallel along stretches of homoeologous chro
mosomes, providing a genomic environment conducive to 
genetic exchanges between non-allelic loci. Similar DNA se
quences may transiently form heteroduplex DNA (Holliday 
1964, 1966), in which repair of unmatched bases may allow 
“gene conversion,” rendering similar DNA sequences identi
cal (Galtier 2003). Often implicated in homogenization 
of small tracts of paralogous DNA sequences, usually be
tween several and several hundred base pairs (Petes and 
Symington 1991), gene conversion has long been thought 
to account for the evolution of various multigene 
families (Sawyer 1989; White and Crowther 2000; 
Mondragon-Palomino and Gaut 2005) and proximal gene 
clusters such as rRNA (Brown et al. 1972) and histone genes 
(Ohta 1984). Gene conversion may explain low divergence 
rates between paralogs produced by ancient large-scale 

duplication events in yeast (Gao and Innan 2004), appearing 
to have affected 2% of Caenorhabditis elegans duplicated 
genes (Semple and Wolfe 1999) and 18% of homeologs dupli
cated before the mouse–rat divergence (Ezawa et al. 2006).

Plant whole-genome duplications and associated genome- 
wide sets of simultaneously duplicated homoeologous genes 
have facilitated surveys for gene conversion, finding rich evi
dence of the action of this mechanism with clear temporal 
and spatial patterns. Complete genome sequences enable 
searches for footprints of gene conversion using elegant ap
proaches such as phylogenetic incongruity in “gene trees,” 
for example, finding that ancient duplicates within the 
same genome are more similar to one another than they 
are to their alleles in a different genome. Gene conversion be
gins virtually immediately after polyploid formation, being 
found at appreciable frequency in “synthetic” polyploid 
Arachis a few years after being produced by humans 
(Zhuang et al. 2019) and neopolyploid canola formed in na
ture a few thousand years ago (Chalhoub et al. 2014), with 
gradually declining frequency over a few million years of evo
lution of a new lineage but still discernible within the elite 
gene pools of crops such as cotton (Guo et al. 2014).

Striking spatial patterns of gene evolution are evident 
along plant chromosomes, with some general principles 
that appear to have persisted for millennia, and intriguing 
special cases. “Euchromatin” and “heterochromatin,” long 
recognizable cytologically by differential staining, have pro
foundly different composition and evolution, effectively pro
viding each plant genome with 2 qualitatively different 
compartments that respectively facilitate different types 
and rates of evolution. Euchromatin tends to be terminal 
to the chromosomes, accounts for most reciprocal exchange 
between orthologs (“conventional” recombination) and is 
gene-rich with gene orders persisting over long time periods 
(Bowers et al. 2005). Heterochromatin tends to be the phys
ically larger compartment, accounting for much of the differ
ence in DNA content between closely related taxa (Bowers 
et al. 2005), with relative paucity of genes but enrichment 
for recent single-gene duplications [or perhaps merely less ef
fective removal than in euchromatin (Paterson et al. 2009)] 
and extensive migration of DNA between pericentromeric 
regions of different chromosomes. On paleo-duplicated 
chromosomes, regions of euchromatin and heterochromatin 
closely correspond (Paterson et al. 2009), indicating that 
these respective states have persisted for long time periods, 
for example, nearly 100 million years in the cereals 
(Wang et al. 2015).

Intriguing and perplexing are the case of rice chromosomes 
11 and 12 and their homologs and homeologs in other 
cereals. Derived from a single ancestral chromosome in the 
pan-cereal genome duplication (Wang et al. 2007), these 
chromosomes experienced illegitimate recombination that 
has been temporally restricted in a stepwise manner, inde
pendently forming “strata” in different grass lineages with 
perplexing properties (Wang et al. 2011). The pericentro
meric region accounts for two-thirds of the gene content 
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differences between this homeologous chromosome pair, yet 
there is generally low sequence divergence between paleo- 
duplicated genes. Indeed, a distal region has the greatest 
DNA similarity between surviving duplicated genes found 
anywhere in the genome but also the highest concentration 
of lineage-specific gene pairs found anywhere in these gen
omes and with a significantly elevated gene evolutionary rate.

In partial summary, the neopolyploidy that has long been 
evident from classical genetics and cytology [e.g. (Stebbins 
1966)] is merely the tip of the iceberg—plants have been ex
periencing recursive whole-genome duplications throughout 
their evolutionary history, followed by gene and chromo
some losses and rearrangements that obscure cytological evi
dence but leave signatures of these ancient events in genome 
sequences. The classical notion of polyploidy as a generator 
of diversity may be somewhat simplistic in that endoredupli
cation of some tissues may “preadapt” plants to having mul
tiple functioning gene copies in a cell, that signatures of 
selection consistent with functional buffering are also evi
dent, and that the availability of duplicated genes for entire 
pathways was sometimes insufficient to catalyze major 
events.

Toward harnessing botanical diversity
With a broad range of plant genome sequences now available 
and the ability to routinely deepen the sample as needed to 
address fundamental questions and/or applied goals, better 
knowledge of plant evolutionary history informs and guides 
utilization of botanical diversity to improve human lives.

Building on early forays showing that plant genomes were 
not the staid and stable environments we once envisioned 
but in fact were highly fluid [e.g. (McClintock 1984)], detailed 
assemblies have highlighted heterogeneity across the genom
ic landscape. Plant genomes are dynamic and variable envir
onments, broadly comprised of 2 qualitatively different 
compartments that respectively facilitate different types 
and rates of evolution, corresponding to classical “euchroma
tin” and “heterochromatin” (Bowers et al. 2005). Particularly 
striking chromosomal regions show both the most extensive 
gene loss and the most striking conservation of the remain
ing genes, putatively reflecting high levels of nonreciprocal 
exchanges but driven by selective forces that are not yet 
understood (Wang et al. 2011). In sum, a plant genome pro
vides a range of options that may permit the same adaptive 
need to be met by different means at different times and/or 
in different lineages.

Much like the genome as a whole, the gene space also in
cludes qualitatively different components that may respect
ively facilitate different types and rates of evolution. 
Polyploids have been thought to acquire capabilities that 
are “more than the sum” of those of their diploid progenitors, 
with gene duplication (Maere et al. 2005) providing material 
available for divergence to new function (Stephens 1951; 
Ohno 1970; Force et al. 1999; Lynch and Conery 2000; 
Taylor and Raes 2004), while normal function by the 

homeolog insulates the fitness of the organism. However, 
in contrast with the classical “functional divergence” model, 
some groups of gene families show signatures of selection 
consistent with “functional buffering” (conservation of an
cestral function) (Chapman et al. 2006; Paterson et al. 
2006), with duplicated copies continuing to functionally 
compensate one another for far longer periods (Gu et al. 
2003) than are thought to be necessary for “functional diver
gence” to occur (Lynch and Conery 2000).

In nature, heterogeneity and flexibility, rather than a spe
cific pattern of genome organization, may confer evolution
ary success. Evolution occurs at the intersection of genetics 
and ecology, each the outcome of hosts of multifactorial in
teractions, and this complexity may be reflected in outcomes 
incongruous with evolutionary expectations rooted in gen
omics. For example, the evolution of a complex pathway 
such as C4 photosynthesis intuitively would have been great
ly simplified by stoichiometric balance between its constitu
ent parts (Birchler and Veitia 2007)—the inference that it 
evolved not from available whole-genome duplicates but 
from single-gene duplications (Wang et al. 2009) suggests a 
series of adaptive steps toward its greater efficiency at ambi
ent CO2 levels and elevated temperatures (Heckmann et al. 
2013; Schluter and Weber 2020). Likewise, in lineages that 
survived long periods during which no whole-genome dupli
cations survived, adaptation utilized raw material provided 
by other mechanisms (Guo et al. 2019).

The spectrum of adaptations observed in nature informs 
approaches by which plants might be improved to better 
meet human needs. For example, cotton domestication 
was associated with conversion of a few dozen genes in the 
“D” genome (from a progenitor that does not produce spin
nable fibers) to the “A” genome sequence, thus doubling 
copy number of the allele from the progenitor that does pro
duce spinnable fibers (Guo et al. 2014). This raises several 
questions. First, did this doubling confer variation in fiber 
yield or quality for which domesticates were selected? 
Second, would doubling of other cotton genes permit further 
improvements—or does a similar phenomenon contribute 
to phenotypes of other crops? Genome editing now permits 
empirical testing of such questions by engineering of conver
sions not found in nature.

A natural means by which large numbers of single gene- 
sized chromosomal tracts could be transferred between 
exotic and elite genotypes for empirical phenotypic evalu
ation would be of high value. Transfer of favorable traits 
from wild or exotic relatives by recurrent “backcrossing” to 
an elite crop cultivar typically includes 10% to 20% of the 
chromosome carrying the target gene, including hundreds 
of nearby genes that often impose “linkage drag” from asso
ciated undesirable phenotypes. DNA markers expedite this 
process, especially for target genes with recessive or subtle 
phenotypes otherwise requiring replicated progeny testing 
and identifying recombinants that minimized linkage drag. 
However, better still would be a means to induce such single- 
allele transfers, for example, in F1 hybrids between an exotic 
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donor and an elite line engineered with appropriate molecu
lar machinery—followed by selfing or backcrossing to permit 
“screening” large numbers of individual exotic alleles for use
ful effects in progeny in much the same manner as reverse 
genetics screens while dramatically reducing the impact of 
linkage drag. This would especially facilitate evaluation of al
lelic variation in recombinationally recalcitrant heterochro
matin, usually the physically larger compartment of a plant 
genome. Albeit not involving transfer or gene-sized tracts, 
methods by which hundreds of novel regulatory alleles can 
be generated (Rodríguez-Leal et al. 2017) foretell similar 
new opportunities to screen large numbers of candidates 
for alleles conferring novel functionality.

Polyploidy itself has long been employed to introgress bo
tanical diversity from wild species into cultivated gene pools, 
but many species combinations fail to produce viable hy
brids. Moreover, hybrids from such crosses often form novel 
alleles per se, by loss and restructuring of low-copy DNA se
quences (cited above), which in some cases are associated 
with phenotypes (Schranz and Osborn 2000; Pires et al. 
2004; Schranz and Osborn 2004). Convergent loss of dupli
cated copies of specific genes following independent duplica
tions that are separated by hundreds of millions of years of 
evolution may reflect an underlying set of principles of mo
lecular evolution that contribute to the fates of genome du
plications (Paterson et al. 2006), raising the intriguing 
hypothesis that persistence of artificial polyploids might be 
facilitated by silencing 1 copy of these genes. Methods for 
simultaneously editing dozens of genes at once (Campa 
et al. 2019; Yuan and Gao 2022) or in orthogonal combina
tions (Cetin et al. 2023) may permit empirical tests of this hy
pothesis, potentially accessing rich additional diversity.

While the creation of “synthetic” tetraploids by humans 
has been widely attempted to exploit otherwise-inaccessible 
botanical variation in crop improvement, a recent example 
reverses the process. The formation of tetraploid S. halepense 
∼1 to 2 million years ago from a naturally occurring event 
merging the genomes of African S. bicolor (sorghum) and 
Asian S. propinquum was the first surviving genome duplica
tion in the sorghum lineage in nearly 100 million years (Wang 
et al. 2015), and its spread across 6 continents has exposed its 
rich variation to diverse selective forces (Paterson et al. 2020). 
Recent discovery that diploid sorghums can be obtained 
from certain crosses with tetraploid S. halepense-derived 
materials (Cox et al. 2017) permits genetic novelty from 
S. halepense to be investigated for contributions to the con
ventional sorghum gene pool.

In closing, the world has changed since the first author 
walked the wheat fields as a graduate student, learning empir
ical whole organism–level methods of plant breeding. It is hard 
to imagine an alternative that evaluates the voluminous num
ber of interactions between and among hardware, software, 
and environment that are reflected in the whole organism–le
vel phenotyping essential to making plant breeding decisions. 
However, the potential inputs into crop improvement pro
grams have snowballed, genomics transcending transgenesis 

with enriched knowledge of the innate hardware and software 
of plant genomes and their function, and with new abilities to 
track genome transmission and alter the hardware and software 
in designed ways that leave behind no exogenous DNA. 
Moreover, we have far better understanding of the heterogen
eity and flexibility of plant genomes and the forces that have 
acted to permit them to adapt to habitats from the tropics 
to near the poles and from sea level to at least 20,100 feet in 
altitude (Younghusband 1926), forming ramets ranging from 
floating Wolffia spp. plants of 1 mm in length (Raven et al. 
1992) to Eucalyptus regnans trees of 100 m in height and 
10 m in trunk diameter. Writing this article was especially inter
esting—perhaps as was envisioned by the editors who sug
gested such a partnership, the second (“junior”) author 
challenged the first to reach well beyond the original assign
ment, with the end result presenting a broad and, we hope, in
tegrative picture of the state of knowledge of botanical diversity 
at the molecular level. We emphasize once again that this 
breadth made truly exhaustive coverage intractable, and the 
overrepresentation of our own studies and others in our focal 
taxa is with no disrespect intended to the excellent work of 
many esteemed colleagues that would be similarly suitable.
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