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The scarcity of accessible sites that are dynamic or cell type-specific in plants may be due in

part to tissue heterogeneity in bulk studies. To assess the effects of tissue heterogeneity, we

apply single-cell ATAC-seq to Arabidopsis thaliana roots and identify thousands of differen-

tially accessible sites, sufficient to resolve all major cell types of the root. We find that the

entirety of a cell’s regulatory landscape and its transcriptome independently capture cell type

identity. We leverage this shared information on cell identity to integrate accessibility and

transcriptome data to characterize developmental progression, endoreduplication and cell

division. We further use the combined data to characterize cell type-specific motif enrich-

ments of transcription factor families and link the expression of family members to changing

accessibility at specific loci, resolving direct and indirect effects that shape expression. Our

approach provides an analytical framework to infer the gene regulatory networks that execute

plant development.
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S ingle-cell genomics allows an unbiased sampling of cells
during development with the potential to reveal the order
and timing of gene regulatory and gene expression events

that specify cell identity and lineage. An ideal system to test the
ability of single-cell genomics to provide insights into develop-
ment is the Arabidopsis thaliana root: along its longitudinal axis,
a single, radially-symmetric root captures developmental trajec-
tories for several cell types. Approaches in this organism have
included single-cell RNA-seq to transcriptionally profile indivi-
dual root cell types along this developmental axis1–6, and with
respect to their ploidy.

Studies of chromatin accessibility in samples enriched for
specific plant cell types have revealed: (i) the existence of cell
type-specific regulatory elements; (ii) the relative scarcity of such
elements compared to their prevalence in animals or humans; (iii)
the expected enrichment of transcription factor binding sites
within these elements; and (iv) a higher frequency of dynamic
regulatory elements upstream of environmentally-responsive
genes than constitutively expressed genes7,8. Although the cor-
relation between chromatin accessibility and nearby gene
expression is generally weak in both plants and animals9, this
correlation improves for regulatory elements that show dynamic
changes in chromatin accessibility, for example in response to an
environmental stimulus or developmental signal7,9–11. In contrast
to animals, however, the majority of chromatin-accessible sites in
plants show little change across tissues, conditions, or even
genetic backgrounds, raising the possibility that cell and tissue
identity is less rigidly engrained in the chromatin landscape in
plants than in animals7. Alternatively, cell type-specific regulatory
elements and gene expression in plants may have been obscured
by tissue heterogeneity in bulk tissue studies.

Cell type-specific chromatin-accessible landscapes are also of
interest for addressing other fundamental biological questions.
General transcription decreases along a cell type’s developmental
trajectory, while expression of cell type-specific genes
increases2,12,13, in agreement with Waddington’s predictions on
epigenetic landscapes14. In the A. thaliana root, the increasing
maturity of certain cell layers is accompanied by endoreduplica-
tion. The presence of additional gene copies may contribute to the
observed increase in the expression of cell type-specific genes;
alternatively, the initial gene copies may increase their tran-
scription. Although endoreduplication is a common mechanism
to regulate cell size and differentiation in plants and some human
and animal tissues15–17, the influence of this phenomenon on
gene regulation and expression has been largely overlooked. In
plants, endoreduplication generally enhances transcription17,18,
in particular of cell wall-related genes19 and genes encoding
ribosomal RNA20, hinting at a role for this process in driving
increased translation.

Here, we provide single-cell resolution maps of open chro-
matin in the A. thaliana root to address the issue of tissue het-
erogeneity and to detect likely endoreduplication events. We use a
droplet-based approach to profile over 5000 nuclei for chromatin
accessibility, and identify 8000 regulatory elements that together
define most cell types of the root. We describe an analytical
framework that links patterns of open chromatin with tran-
scriptional states to predict the identity, function, and develop-
mental stage of individual cells in the A. thaliana root. We
integrate the single-cell ATAC-seq (scATAC-seq) data with
published single-cell RNA-seq (scRNA-seq) profiles of the same
tissue to obtain automated annotations of cells in our scATAC-
seq data. Using the integrated dataset, we link individual cells
from our scATAC-seq data with their nearest neighbors in
scRNA space to define relative developmental progression, level
of endoreduplication, and the genes differentially expressed in
these nearest neighbors. This approach allows the identification of

three distinct developmental states of endodermis cells, which
had escaped detection using scRNA-seq alone. Using scATAC-
seq data integrated scRNA-seq data, we predict individual
members of large transcription factor families that play a role in
epidermis development, pinpointing individual regulatory events
that link peak accessibility and transcription factor expression in
these cells. The combination of binding motifs, transcription
factor expression, and chromatin accessibility provides a basis for
predicting the gene regulatory events that underlie development.

Results
scATAC-seq identifies known root cell types. We first asked if
ATAC-seq profiles at the single-cell level were capable of cap-
turing known root cell types. We profiled 5283 root nuclei, at a
median of 7290 unique ATAC inserts per nucleus. A high fraction
of these inserts occurred in one of the 22,749 open chromatin
peaks (FRIP score= 0.71) based on pseudo-bulk peak calling
(Cellranger v3.1, 10× Genomics); this fraction is similar to that
seen in high-quality bulk accessibility studies (Supplementary
Fig. 1A, B)9. Furthermore, the scATAC assay detected 1794 peaks
that had not been observed at appreciable levels in bulk ATAC-
seq. We used UMAP dimensionality reduction of the peak by cell
matrix to build a two-dimensional representation grouping of
cells with similar accessibility profiles (Fig. 1a). Subsequent cluster
assignment by Louvain community detection identified nine
distinct cell clusters21. Across all cells, we identified 4389 peaks
(ranging from 307 to 1993 per cell type) with significant differ-
ential accessibility, suggesting that around 20% of all accessible
sites contain some information on cell type (Supplementary Data
1). Though only 16% (707/4389) of cell type-specific peaks were
found to be distal, or greater than 400 base pair from the nearest
gene, this was greater than the fraction expected by chance. Only
9.4% (2159/22,749) of all peaks were distal, suggesting that these
distal peaks are slightly (1.7×) enriched for regulatory sites that
define cell identity. To assign cell type annotations to each of
these clusters, we generated “gene activity” scores that sum all
ATAC inserts within each gene body and 400 bp upstream of its
transcription start site. This approach rests on the assumption
that a chromatin-accessible site in the compact A. thaliana gen-
ome tends to be associated with regulation of its most proximal
gene22. While this assumption may not hold universally, gene
activity scores offer the advantage of allowing a direct comparison
to bulk ATAC-seq and single-cell RNA-seq datasets through a
matched feature set. In this way, we identified genes whose
accessibility signal specifically marks each cell cluster. We
visualized peaks with cell type-specific accessibility by grouping
cells of a similar type and “pseudo-bulking” their insert counts at
each position in the genome (Fig. 1b). Bulk and cell type-specific
ATAC signals are similar to those obtained in prior whole tissue
and cell type enrichment-based ATAC-seq studies for the root
(Supplementary Fig. 1B–D)11.

We used comparisons to tissue-specific genes that were
identified from single-cell RNA-seq studies of the A. thaliana
root to assign a cell type to each cluster defined by ATAC markers
from “gene activity” scores2,5,6. We identified 210 genes with
unique accessibility patterns across all cell types (Supplementary
Data 2); FRIP scores, fragment lengths, and total read counts did
not vary greatly across cell types (Supplementary Fig. 1E–G). For
each cell type, the median number of genes with tissue-specific
accessibility was 20 (range 5–53) (Fig. 1c). This small number of
genes is consistent with earlier studies that show few open
chromatin sites that define cell type identity in A. thaliana7,23.
Although thousands of differentially accessible sites have been
found across tissue types7, accessibility differences between more
closely related cell types remain largely unexplored, with the
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exception of root hair vs. non-hair, in which few differences were
found7,11. These differences, uncovered using a cell-enrichment
based technology11, were replicated in the epidermal cells
identified in our scATAC assay (Supplementary Fig. 1C, D).
For three cell clusters (959 cells, or 18% of cells), we could not
identify a coherent set of a markers and therefore could not

annotate them (gray points, Fig. 1a). However, all other cell
clusters were manually annotated and corresponded to the major
cell layers of the root (Supplementary Fig. 2A): outer layers
including epidermis cortex, and a precursor of endodermis and
cortex (ec pre); endodermal layers comprised of three distinct
types (endo 1, 2, and 3); and the stele comprised of two main
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Fig. 1 scATAC-seq identifies known root cell types. a UMAP dimensionality reduction plot of root cells using peak-level scATAC data. Cells are colored
according to Louvain clusters, and broad tissue types are indicated with transparent shading. b Pseudo-bulked peak tracks generated by combining ATAC
data from all cells within a cluster. Each column represents a single locus in the genome that shows cell type-specific accessibility; each row represents a
cell type, and each column shows an example marker peak for each type. Colors match those in previous panel. A cluster residing between the epidermis
and endodermis clusters, with expression of markers from both cell types (Supplementary Fig. 2B, C) was given the label “c/e pre” (precursor of cortex/
endodermis, second row), and epidermis was shortened to “epi”. c Dotplot showing marker genes for each cell type cluster. Each column represents a
single gene’s activity score, the summed accessibility of its gene body and promoter sequence (−400 bp from transcription start site). The color of each
dot indicates the magnitude of accessibility and the size of each dot represents the fraction of cells in each cell type showing accessibility at that gene.
d Heatmap showing the predicted effect, across all peaks, of motifs from each Arabidopsis transcription factor family on cell type-specific accessibility.
Darker shades of red indicate that presence of the motif is correlated with increased accessibility in that cell type, whereas shades of blue indicate that the
motif is anti-correlated with accessibility. The mean effect all transcription factors within a given family are shown as rows, and each column represents a
cell type. Source data for UMAP projection and cell annotations (a) are provided as a Source Data file.
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types along with a phloem type (stele phloem). Several traditional
marker genes were used to facilitate annotation of root cell types
(Supplementary Fig. 2B–D), as were marker genes identified in
previous scRNA-seq studies (Supplementary Data 3). In general,
scATAC marker genes did not show a strong overlap with RNA-
based marker genes. Endodermis cells were an exception, as
several of their scATAC marker genes (AT3G32980, AT1G61590,
AT1G14580, AT3G22600, and AT5G66390) were also found to
be marker genes in single-cell RNA-seq studies24. While this lack
of overlap makes annotation more challenging, it is consistent
with the reported weak correlation of chromatin accessibility with
gene expression23,25. Moreover, the finding that expression levels
are not precisely predicted by nearby accessible sites suggests that
accessibility can add orthogonal information about cell identity to
further stratify cell types into distinct sub-types.

Sequence motifs of transcription factor families associate with
cell type-specific sites of open chromatin. Accessibility at reg-
ulatory sites is driven by transcription factor binding and mod-
ification of local chromatin26. We examined if any of the cell
type-specific accessible sites were associated with the presence of
transcription factor binding motifs. To do so, we used a set of
representative motifs for all A. thaliana transcription factor
families and nearly every individual transcription factor27 to tally
these motif counts within all 21,889 peaks in the full scATAC-seq
dataset to build a peak-by-motif matrix. As each peak can be
described in terms of its relative accessibility in each of the
identified cell types, we performed a linear regression for each
motif to test for significant association of accessibility and motif
presence. Relative accessibility values were calculated by first
pseudo-bulking all peak counts by cell type, and then normalizing
these cell type-specific peak accessibility scores to a background
peak accessibility of all cells pooled together. By testing the
association of motif counts and cell type-specific accessibility, we
identified transcription factor binding motifs whose presence was
correlated with higher accessibility in each cell type. However,
because motif sequence content for individual transcription fac-
tors is redundant, we computed means across each transcription
factor family.

We found significant associations with motifs from at least one
transcription factor family in all cell types (Fig. 1d). For example,
relative chromatin accessibility in epidermal cells was strongly
associated (q-values ranging from 1e−24 to 1e−133) with the
presence of motifs from the WRKY transcription factor family;
this family includes TTG2, which, along with TTG1 and GL2, has
an important roles in atrichoblast fate in the epidermis28.
Furthermore, the effects of each motif family on relative
accessibility was sufficient to hierarchically cluster cell types
according to broad tissue classes (Fig. 1d). Based on similarities in
motif associations, hierarchical clustering grouped all stele
clusters (1, 2, and 11), epidermis and cortex (clusters 0 and 3),
two endodermis clusters (4 and 10), and another endodermis
cluster with epidermal precursor cells (clusters 7 and 8). That
motif associations alone can distinguish among clusters and
group similar ones together provides an independent verification
of the cell type-specific nature of the chromatin-accessible sites
detected in the scATAC-seq data.

Integration of scATAC-seq and scRNA-seq data improves cell
type annotation. Because scATAC-seq data both identified
known root cell types and provided cell identity assignments not
identifiable through scRNA-seq, we addressed whether combin-
ing these two datasets results in additional insights than what
could be gained from either alone. We first addressed whether
both data types could be embedded in the same low-dimensional

space in a manner that maintains the cell identities defined by
both scATAC-seq and scRNA-seq. Such embedding assumes that
the underlying cell identities represented in each dataset are
similar. Although the root tissue sampled for our scATAC-seq
experiment was not identical to that used in previous scRNA-seq
experiments, we expected that the same major cell types were
sampled in both types of experiments. Moreover, the data gen-
erated by both methods share “gene” as a feature, i.e., accessibility
near or within a given gene; expression of a given gene.

We used the anchor-based multimodal graph alignment tool
from the Seurat package to find nearest-neighbor scRNA-seq
matches for each cell in the scATAC-seq data29,30. In short, the
tool identifies representative features (shared “anchor” genes in
our case) in each dataset and looks for underlying correlation
structure of those features to group similar cells in a co-embedded
space. We plotted all cells within the resulting co-embedded space
with cell type labels from each dataset separately. Cells derived
from scRNA-seq and scATAC-seq experiments were well mixed
(Fig. 2a). Moreover, we found that cells of the same type were co-
localized independent of the source data (Fig. 2b, c), though some
separation by data type was apparent, likely owing to the
imputation step of dataset integration29. This result suggests that
RNA and ATAC signals, which are only poorly correlated in bulk
studies, are capable of grouping cell identities when determined in
individual cells of a complex tissue. We further used this co-
embedded space to refine our earlier manual cell type annotations
by transferring labels of neighboring scRNA cells onto the
scATAC cells (Supplementary Fig. 3A, B); while most of these
labels matched, the greatest number of mismatches was seen in
endodermis sub-type 1. The transferred labels matched our
manual annotations, and, in the case of epidermal cells, allowed
us to separate a single scATAC cluster into hair and non-hair
cells (Fig. 2a and Supplementary Fig. 3A, B). Furthermore, this
co-embedded space was additionally used to transfer quantitative
metrics and gene expression values derived from scRNA-seq data
(Supplementary Fig. 3C). The three distinct scATAC clusters that
were assigned an “endodermis” label with this approach are a
striking example of scATAC data yielding, within a single cell
type, greater stratification of “types” than the generally richer
scRNA data.

Epidermal cell layers show increased levels of endoreduplica-
tion. scATAC-seq data can potentially provide insight into DNA
copy number and its impact on gene regulation, but this potential
has not been thoroughly explored. DNA copy number is of
special relevance in the A. thaliana root, as each cell layer
undergoes different rates of endoreduplication19. In a diploid cell,
a single accessible locus tends to show 1 or 2 transposition events.
In polyploid cells with higher DNA copy number, a single
accessible locus could show 4, 8, or even 16 transpositions.
Therefore, cells containing a large number of peaks with >1
transposition event are likely to represent endoreduplicated cells.
To identify such cells, we classified each cell by the mean number
of cuts it contained per peak and examined the distribution of this
metric, accounting for differences in total UMI counts (see
“Methods” section), to draw a threshold above which cells were
classified as likely endoreduplicated (Supplementary Fig. 4A, B).
We found the expected trend of higher endoreduplication in the
outermost cell files, with reduced prevalence in the stele (Sup-
plementary Fig. 4C).

We then used a second method to identify endoreduplicated
cells with a transcriptional signature. Instead of relying on the
number of transpositions in the accessibility data directly, we
instead leveraged the dataset integration described above (Supple-
mentary Fig. 3C) to transfer scRNA-seq-based annotations to the
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cells in our scATAC experiment. To identify endoreduplicated
cells in scRNA-seq data, we used a published set of marker genes,
sub-setting the top 250 markers for each ploidy level to generate
signature scores for 2n, 4n, 8n and 16n ploidies19. With these
scores, we predicted endoreduplicated cells by calculating, for each
cell, the ratio of the 8n signature relative to the diploid signature.
Similar to the accessibility-based metric, this transcription-based
approach identified endoreduplicated root cells in the expected
pattern, with higher fractions in the epidermis cell layer and
diminished levels in the stele (Supplementary Fig. 4D, E). We
found these two methods of identifying endoreduplicated cells to
be concordant (Supplementary Fig. 4F), but because the
accessibility-based classification was less quantitative, we used
the transcriptionally-based metric in subsequent analyses. This
metric captured an abundance of tetraploid xylem cells in the stele
(Supplementary Fig. 4E), consistent with previous findings19.

scATAC-seq captures three distinct endodermis types repre-
senting different developmental stages. We dissected the three
endodermis clusters in greater detail using three approaches:
(i) by identifying differentially accessible sites among sub-types;
(ii) by aligning these sub-types to scRNA-seq data that have been
annotated for endoreduplication and developmental progression;
and (iii) by determining differentially expressed genes in the
nearest-neighbors to each of these endodermis sub-types in
scRNA-seq space (Fig. 3a).

We identified few differentially accessible genes (adjusted
p-value < 0.05 and at least 2-fold change in accessibility) in each
endodermis sub-type: 25 for the first sub-type, 24 for the second,

and 17 for the third (Fig. 3a). The low number of associated genes
precluded gene set enrichment analyses, but genes uniquely
accessible in sub-type 1 included transcription factors MYB85
(AT4G22680) and NAC010 (AT1G28470) as well as genes involved
in suberization (FAR1, FAR4, and FAR5)31. Endodermis sub-type
2 showed increased accessibility at HIPP04 (AT1G2900), encoding
a heavy metal-associated protein, ANAC038 (AT2G24430), and
phenylpropanoid metabolism genes32. Endodermis sub-type
3 showed strong accessibility at the BLUEJAY (AT1G14580) locus
encoding a C2H2 transcription factor implicated in endodermis
differentiation (Fig. 3b)33, as well as MYB122 (AT1G74080) and
other genes for phenylpropanoid biosynthesis (PER22, PER32,
PER72, and BGLU32)32. We addressed whether these differentially-
accessible genes show different expression patterns in endodermis
cells in scRNA-seq space by mapping expression of each gene onto
a subclustered set of endodermis cells combined from several
scRNA-seq studies of the A. thaliana root2–6. The small set of
marker genes identified for each scATAC sub-type showed no
consistent expression pattern in the scRNA-seq data (Supplemen-
tary Fig. 5A), suggesting that other features distinguished these
three sub-types.

Structure within two-dimensional embeddings of scRNA-seq
and scATAC-seq data derived from developing tissues is often
associated with differences in developmental progression or other
asynchronous processes like the cell cycle. Furthermore, root tissue
has the unique feature of being highly endoreduplicated, which
could also account for differences among the sub-types. To assess
whether the endodermal sub-types were associated with these
features, we added annotations for developmental progression,
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endoreduplication and cell cycle to the combined root scRNA-seq
data and used data integration (as in Fig. 2) to test whether cells
from the endodermal sub-types were associated with any of these
features (Supplementary Fig. 3C).

We assessed developmental progression with two orthogonal
methods: (i) correlation with published bulk expression data
taken along longitudinal sections of the root1; and (ii) a modified
measure of loss in transcriptional diversity (see “Methods”
section), which correlates strongly with developmental progres-
sion in a large number of scRNA-seq datasets, including of the
Arabidopsis root2,13. We benchmarked the developmental
progression score directly against data from endodermis cells of
specific developmental stages, and found a strong relationship
between loss in transcriptional diversity and endodermis devel-
opmental stage (Supplementary Fig. 5B)2. For each cell of the
endodermal sub-types, we calculated the average developmental

progression of its 25 nearest neighbors among root scRNA-seq
cells (Supplementary Fig. 5C, D) and found, assigning this
average to each scATAC endodermis cell, a trend of develop-
mental progression among the endodermis sub-types (Fig. 3c).
This result was robust to changes in the number of neighbors
used to identify similar cells from scRNA-seq data (Supplemen-
tary Fig. 5E). We confirmed the orientation of the developmental
trajectory among these clusters using (1) signature scores
computed for early, middle, and late stage-associated genes of
the endodermis3; and (2) correlation to bulk transcriptomes from
FACS-based isolation of endodermis cells at different develop-
mental stages (Supplementary Fig. 5F, G)1. This trend was the
same if we calculated the developmental progression metric based
on scATAC-seq data alone (Supplementary Fig. 5H), though the
correlation to the transcriptional metric was weak overall
(Supplementary Fig. 5I)13. Cells from sub-type 1 were the least
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Fig. 3 scATAC-seq identifies distinct sub-types of endodermal cells. a Violin plots showing specific patterns of accessible genes that mark each
endodermal sub-type. Two examples are given for each endodermal sub-type, with gene-level accessibility scores indicated for all other cell types. b UMAP
of all cells colored by accessibility of the BLUEJAY gene, which marks endodermal type 3; corresponding violin plot for this gene in lower left panel in a.
c Boxplot showing an increase in median developmental progression of each endodermal sub-type, as determined by average transcriptional complexity in
the nearest 25 scRNA neighbors of each scATAC cell in the co-embedded representation from Fig. 2a; right inset shows UMAP of endodermal cells with
each cell colored by the average developmental progression of its scRNA neighbors, mirroring the gradual increase seen in left panel. Boxplots are
generated using values from individual endodermis cells (early n= 489 cells, mid n= 141 cells, late n= 225 cells); whiskers represent 1.5 times the
interquartile range of the data, the box represents the interquartile range, and the horizontal line in the box represents the median. d Boxplot showing an
increase in median levels of endoreduplication across endodermal sub-types, ascertained as in c, but instead using a gene expression signature of
endoreduplication; right inset shows UMAP of endodermal cells with each cell colored by the average endoreduplication score of its scRNA neighbors, with
highest levels seen in endodermal sub-types 2 and 3 (number of cells, n, identical to previous panel).
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developed, while cells from sub-type 3 tended to co-occur with
the most mature endodermal cells in the co-embedded graph
(Fig. 3c). We conclude that the three endodermal sub-types
primarily represent cells of differing developmental progression,
and that differences in chromatin accessibility are able to capture
this stratification of endodermis maturity.

Developmental progression in the root is associated with
increased ploidy through endoreduplication19. Using the
transcriptional-based metric for endoreduplication described
above, we examined the predicted ploidy of orthogonally-
classified cells derived from scRNA-seq (Supplementary Fig. 5J)
and from the nearest RNA-seq neighbors of each endodermis
sub-type (Supplementary Fig. 5K). We found that the younger
endodermis sub-type 1 cells had mostly 2n neighbor cells, while
the more mature sub-types 2 and 3 had mostly endoreduplicated
neighbor cells, with similar levels in each (Fig. 3d).

To better understand the differing transcriptional and
chromatin accessibility patterns among endodermis sub-types,
we analyzed differentially expressed genes from each endodermis
sub-type. The early endodermis type, which is not yet
endoreduplicated, showed an enrichment of genes (Supplemen-
tary Data 4) involved in Casparian strip formation (CASP3,
CASP5) and wax biosynthesis (HHT1). The intermediate sub-type
2 also showed enrichment for genes involved in Casparian strip
formation (CASP3, CASP4, CASP5, and GSO1), as well as
mechanosensitive ion channels (MSL4, MSL6, and MSL10)
(Supplementary Data 5). The most advanced endodermis sub-
type 3 showed enrichment for stress responses and metabolism of
toxic compounds, kinase activity, and aquaporin water channels
(Supplementary Data 6), consistent with this mature endodermis
cell type modulating water permeability via aquaporins as well as
through suberization34. We also identified putative regulators of
these stages by looking for transcription factors among the genes
that showed specificity for each endodermis cluster. The earlier
endodermis type showed a single upregulated transcription
factor, ERF54, while the intermediate sub-type showed 14
upregulated transcription factors, including KNAT7, SOMNUS,
and HAT22. MYB36, which was found expressed in the later
endodermis type, activates genes involved in Casparian strip
formation and regulates a crucial transition toward differentiation
in the endodermis35. Because MYB36 regulates early steps of
endodermis differentiation3,35, this result suggests that some
more mature endodermis types may be absent in these data,
perhaps due to technical differences in their ability to be lysed
during nuclear extraction (see “Methods” section).

We used a list of known cell-cycle marker genes (https://www.
arabidopsis.org/) to generate a signature score marking prolifer-
ating cells. This signature score identified cycling cells in other
cell types, such as early epidermis cells near the quiescent center
(Supplementary Fig. 6A, B) in a meta-analysis of previously
published scRNA-seq data. However, when this signature score
was transferred to the scATAC-seq endodermis clusters by the
nearest neighbor procedure described in Supplementary Fig. 3C,
we observed no differences corresponding to each endodermis
sub-type (Supplementary Fig. 6C). We conclude that cell cycle
does not distinguish the endodermis sub-types.

Overall, the combined information gained from transcriptional
signatures of developmental progression and endoreduplication
highlights the importance of integrating both open chromatin
and transcriptional profiling, to identify cell types or cell states
that may have otherwise been obscured in a single data type.

Predicting regulatory events using integrated scRNA and
scATAC data. We previously identified transcription factor
binding motifs that were enriched at cell type-specific peaks in the

root (Fig. 1d). While individual motifs may be associated with
binding and activation by transcription factors, a sequence-level
analysis cannot distinguish among the many members of plant
transcription factor families that share near-identical sequence
preferences. For example, WRKY family motifs were highly
enriched among epidermis and cortex accessible sites, but this
family contains >50 individual genes. In order to narrow down
this list of genes to a few possible candidates, we leveraged our
nearest-neighbor annotation approach (Supplementary Fig. 3C)
to examine expression levels of all WRKY family transcription
factors in the scATAC data (Fig. 4a). Overall, we found that the
majority of WRKY members showed expression in the epidermis,
cortex, or epidermal precursor cells (Fig. 4a), though some
members showed stele-specific expression. To identify the most
likely members to bind the abundance of motifs in epidermis-
specific peaks, we ranked these genes by their specificity in the
epidermis. The top four most epidermis specific genes, WRKY75,
WRKY9, WRKY6, and TTG2 (Fig. 4a), have documented roles in
root development28,36–38. TTG2 showed strong specificity for the
epidermis, but we also predict expression in some cortex and
precursor cells (Fig. 4b). Two key interacting factors of TTG2 that
also contribute to epidermis development, GL2 and TTG139,40,
showed epidermis expression and had correlated patterns (Pear-
son correlation with TTG2 across cells for GL2= 0.91, and TTG1
= 0.47) across all cells (Supplementary Fig. 7A, B).

Given the important role of TTG2 in specification of
atrichoblast fate in the epidermis, we examined the consequences
of its expression on accessibility of individual peaks. Inference of
individual regulatory events, particularly those involving tran-
scription factors, has long been a goal of studies that profile
accessibility at regulatory sites in bulk tissue. The varied cell states
revealed by single-cell profiling data, even those within a cell type,
allow higher-resolution inference of these events. To identify
accessible sites that showed altered accessibility as a function of
transcription factor expression, we used a linear regression
approach. We identified 617 peaks that showed significant (q-
value < 0.05) associations with TTG2 expression levels (Supple-
mentary Data 7). To visualize these associations using scATAC
data, we pseudo-bulked epidermis, cortex, and c/e precursor cells
into four equal-sized bins based on their level of TTG2 expression
(Fig. 4c). We observed peaks whose accessibility increases (Fig. 4c,
top and lower-left panels) and decreases (Fig. 4c, lower-right
panel) in cells with increasing levels TTG2 expression. Most
significant associations were positive, such that increased TTG2
expression led to increased peak accessibility (Fig. 4d). Using
DAP-seq data for TTG2, we examined whether peaks with either
positive or negative associations contain TTG2 binding sites27.
Positive associations occurred whether or not a WRKY binding
motif was present in the associated peak (Fig. 4c, d), suggesting
that the role of WRKY transcription factors in specification of the
epidermis likely requires both direct and indirect regulatory
events. Of peaks with significant (q-value < 0.05) positive
associations with TTG2 expression, 80% of these contained a
WRKY binding motif, while only 38% of the peaks with negative
associations contained a binding motif (Fig. 4d). Overall, this
analysis identifies transcription factors and putative target sites
that constitute regulatory events important for specifying cell
types; these genes and regulatory sites are good candidates for
further functional studies.

Discussion
By profiling chromatin accessibility in the A. thaliana root at
single-cell resolution, we assessed cell types, developmental stages,
the transcription factors likely driving these stages and DNA copy
number changes. We assigned over 5000 root cells to tissues and
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cell types, demonstrating that these assignments are concordant
with single-cell transcriptomic studies. These results answer an
unresolved question in plant gene regulation: does the paucity of
dynamic open chromatin sites seen in bulk profiling experiments
represent an accurate reflection of uniform gene regulation in A.
thaliana or does it reflect a confounding effect of bulk studies?
We found that distinct root cell types show unique patterns of

open chromatin sites, with approximately 1/3 of all accessible
sites showing cell type-specific patterns. This estimate greatly
exceeds the earlier estimates from bulk studies of only 5-10% of
accessible sites showing tissue-specificity or condition-specificity9,
presumably due in part to tissue heterogeneity.

Although this single-cell ATAC study discovered many more
dynamic accessible sites, the correlation between dynamic
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accessibility and gene expression in single cells remained poor,
reminiscent of the equally poor correlation seen in bulk studies.
These data types would be integrated more faithfully in a true co-
assay experiment25,41. Furthermore, decisions made in relating
transposition events to genes complicate analysis; by opting for a
simplistic grouping of proximal promoter cuts with gene body
cuts, rather than a more nuanced method42, we may have
introduced noise into the gene-level counts. Technical differences
in nuclei versus cell-based assays, size selection, developmental
stage, and sequencing depth may also contribute to differences
between scRNA and scATAC datasets. While increasing the
depth of our ATAC signal per cell may alleviate some of this
noise, we argue that the poor correlation between chromatin
accessibility and gene expression is not a function of data quality.
Instead, we propose that this weak correlation reflects the
complex nature of regulatory processes underlying development,
and the differential aspects of regulation captured in scATAC-seq
and scRNA-seq data, which were notably divergent in the
scATAC-specific endodermis sub-types.

We found three distinct endodermis cell clusters that differed
in transcriptional complexity and endoreduplication, consistent
with the clusters representing early, middle, and late stages of
endodermis development previously characterized with scRNA-
seq3. However, at the level of individual marker genes, like the
early-expressed MYB36, a more complex scenario emerged:
accessibility of MYB36 was similar across the three endodermis
subtypes, and predicted expression of MYB36 transcript, while
present in all three subtypes, was highest in “endodermis 3”, the
cluster with the most advanced developmental progression and
highest endoreduplication. Without a direct, one-to-one rela-
tionship between accessibility and expression at individual loci,
we do not expect a one-to-one match for every endodermis
scATAC cell cluster with one found in scRNA space.

Although the correlation of chromatin accessibility and gene
expression is weak at the level of individual loci, either the
entirety of a cell’s regulatory landscape or its transcriptome can
independently capture its cell identity. It is this feature that allows
joint co-embedding of both data types and the use of scRNA-seq
data to annotate scATAC cells. Thus, while the patterns of both
chromatin accessibility and gene expression contain information
on cell identity and development, the relationships between these
patterns are not well-ordered or parsimonious. For the many cells
belonging to a distinct cell type, gene expression results from
direct and indirect regulatory events involving tens or hundreds
of transcription factors and chromatin remodelers that do not
necessarily act in concert. For any individual locus, then, the
expectation that average accessibility predicts average expression
breaks down. Without a simple one-to-one model to explain
regulatory output, we are left with significant heterogeneity
within and between cell types, and a subset of convergent
expression or accessibility patterns that define cell type specificity.
Alternative explanations for the discrepancy in accessibility and
expression include: (1) maintenance of cell identity requires that a

cell’s accessibility and expression profile stably reflect the con-
vergent pattern for that cell type only a fraction of the time and/
or; (2) cells have multiple accessibility and expression patterns
that are sufficient to maintain cell identity and together constitute
the convergent patterns we observe. In both scenarios, the het-
erogeneity in cell type specification will be buffered by factors
outside chromatin accessibility or gene expression, such as spatial
location in tissue, metabolic determinants of cell function, or
developmental age.

We posit that scATAC-seq data combined with scRNA-seq data
will ultimately resolve these alternatives by enabling mechanistic
models of gene regulatory networks. scATAC-seq data alone are
sufficient to identify the full set of accessible sites in the Arabi-
dopsis genome, and examination of the transcription factor motifs
within these sites can enable predictions of regulatory networks.
However, many plant transcription factor families are large, some
containing over fifty members that recognize near identical motifs.
Thus, the accessibility data must be integrated with single-cell
expression data that capture cell type-specific expression of tran-
scription factors in order to narrow down the most probable
transcription factors that are enacting individual regulatory events.
The simple regression framework provided in this work is only a
small step toward more complicated models that capture other
relevant sources of heterogeneity. Building higher resolution
models of key regulatory events will require the expression level of
individual transcription factors in a cell type, the accessibility of
individual peaks in this cell type and the presence of binding
motifs corresponding to the relevant transcription factors. Theo-
retically, a comprehensive capture of cell states with both open
chromatin and transcriptional profiling will allow the ordering of
gene regulatory events, and the larger scale ordering of regulatory
programs that underlie development. The ability to take single-cell
measurements over distinct developmental stages will also increase
the sampling of key regulatory events. Ultimately, achieving the
goal of building models of gene regulatory events underlying
development will require ever larger datasets to fully capture the
range of possible cell states.

In the future, single-cell studies of more complex plant tissues
in crops and other species will necessitate larger numbers of
profiled cells and higher numbers of cuts per cell. Two recent
studies have begun to explore chromatin accessibility in crops in
single-cells43,44. Deeper coverage in future datasets should
enhance our ability to detect rare cell types and more confidently
predict copy number from accessibility data alone. In this way,
approaches that maximize the number of cells profiled at low
cost, such as single-cell combinatorial indexing45, will be critical.
Annotation in future studies will also present a substantial chal-
lenge if a rich literature and genomic analyses, including single-
cell transcriptome profiles, are not available. Nevertheless, as
shown in this proof-of-principle study of the well-characterized
A. thaliana root, the knowledge gained should eventually allow us
to manipulate gene expression and organismal phenotype in a
targeted manner.

Fig. 4 Prediction of candidate regulatory transcription factors from integrated scATAC and scRNA data. a Dotplot heatmap showing predicted
expression of all WRKY family transcription factors across all cells. The color of each dot indicates the magnitude of predicted expression of each gene and
the size of each dot represents the fraction of cells in each cell type showing expression at that gene; genes (rows) are ordered by the specificity of their
epidermis expression. b UMAP plot of cells derived from scATAC experiment, but colored by predicted expression of an epidermis-specific WRKY
transcription factor, TTG2. c Pseudo-bulked accessibility tracks of epidermis peaks whose accessibility showed a significant association with predicted
TTG2 expression. Cells with higher TTG2 expression are shown in lighter shades. All panels show examples of significant (q < 0.05) positive associations of
TTG2 expression with peak accessibility, with exception of the lower right panel. The presence or absence of a WRKY binding motif is indicated below each
peak. d Barplot showing fraction of WRKY binding motifs in peaks of the epidermis, cortex, and pre-cursor type that showed significant association with
TTG2 expression. Peaks whose accessibility showed positive associations with expression are labeled as “opening”; those with negative associations are
labeled as “closing”.
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Methods
Plant materials. Genotype: Arabidopsis thaliana ecotype Col-0 INTACT line
UBQ10:NTF::ACT2:BirA (available from ABRC, stock CS68649). Growth conditions:
LD (16 h light/8 h dark), 22 °C, ∼100 μmol m2s, 50% RH. Sample: whole roots,
harvested 12 days after germination, from seedlings grown vertically on MS+ 1%
sucrose, atop filter paper (to facilitate root harvesting).

Nuclei isolation and scATAC-seq. Nuclei were isolated following a modified
version of the protocol described in Giuliano et al. as follows: 1 g of roots was split in
two batches of 0.5 g, and each batch chopped with a razor blade in 1 mL of Buffer A
(0.8 M sucrose, 10 mM MgCl2, 25mM Tris-HCl pH 8.0 and 1× Protease Inhibitor
Tablet)46. Extracts were combined, final volume increased to 5 mL with Buffer A,
and incubated on ice for 10min, with gentle swirling. The combined extract was
filtered through miracloth, passed through a 26ga syringe five times and re-filtered
through a 40 µm cell strainer (BD Falcon). After centrifugation at 2000 × g 5 min,
the pellet was resuspended in 1 mL Buffer B (0.4M sucrose, 10 mM MgCl2, 25 mM
Tris-HCl pH 8.0, 1× Protease Inhibitor Tablet, 1% Triton X − 100) and loaded atop
a 2-step 25/75 Percoll gradient (1 volume 25% Percoll in Buffer B over 1 volume
75% Percoll in Buffer B). After centrifugation at 2500 × g for 15min, nuclei were
collected either at the 25/75 interface or in the subjacent 75 fraction, washed with
5 vols of Buffer B and recovered by centrifugation at 1700 × g for 5 min. The nuclei
pellet was resuspended in 100 µL Buffer B+ 1% BSA and any nuclei clumps broken
down by pipetting up and down multiple times. Nuclei yield with this protocol was
~94,000 nuclei per gram of roots (fresh weight).

scATAC-seq libraries were built using the 10× Genomics Chromium Single Cell
ATAC Solution platform, following manufacturer’s recommendations. Before
transposition, nuclei were spun 5 min at 1500 × g and resuspended in 10×
Genomics Diluted Nuclei Buffer, at a concentration of 3200 nuclei/µL. Five
microliter of nuclei suspension were used for transposition (16,000 nuclei being the
maximum input recommended for 10× Chromium, and 10,000 nuclei being the
expected recovery).

Combining and processing of root scRNA-seq data. Samples were processed
using the CellRanger v1.2.0 pipeline from 10× Genomics, including updated fil-
tering of “halflet” cells that emerge due to multiply-barcoded droplets.

Integration of scRNA and scATAC data. The R package Seurat version 3.1.5 was
used to align and co-embed the scATAC-seq data with scRNA-seq data published
by Ryu et al.5, and to transfer cell type labels from the scRNA data to the scATAC
data30,47.

The standard workflow and default parameters as described in the Seurat
vignette “PBMC scATAC-seq Vignette” (https://satijalab.org/seurat/archive/v3.1/
atacseq_integration_vignette) were used with the exception that all features (genes)
were used when identifying transfer anchors, and performing the co-embedding
rather than a set of “variable” features as used in the vignette. Briefly this workflow
is as follows:

An anchor set was established with the function “FindTransferAnchors()”
linking the two datasets. Cell type annotations were transferred from the scRNA-
seq data to the scATAC data using the function “TransferData()”. Imputed RNA-
seq count data was generated for the scATAC cells, again using the “TransferData
()” function. The imputed RNA data was then merged with the true scRNA-seq
dataset and embedded in 2D UMAP space using “Seurat” functions29.

A co-embedding was performed with a super-set of published scRNA-seq
data2,3,5. In the co-embedded space the scATAC-seq were found to be most closely
co-located with data from root tips5. Based on this observation co-embedding was
performed with solely with root tip dataset5.

Nearest neighbor analysis for transcriptional characterization of cells iden-
tified in scATAC assay. To annotate cells from the scATAC-seq assay with
transcriptional features, we used average feature values from the nearest RNA
neighbors in our co-embedded data (Fig. 2a). In short, the “distances” package in R
was used to extract cell labels for the 25 nearest neighbors of each scATAC cell. For
a feature of interest (individual gene expression, cell-cycle signature score,
endoreduplication signature score, and developmental progression signature), we
calculated the mean expression from the 25 scRNA cells, and assigned that mean
score to each ATAC cell (Supplementary Fig. 3C).

Endoreduplication signatures. We identified endoreduplicated cells using two
different approaches, the first using scRNA data, and the second using scATAC
data. In the first approach (as in Fig. 3d, Supplementary Fig. 4D, E, and Supple-
mentary Fig. 5B, J), validated sets of endoreduplication markers for 2N, 4N, and 8N
cells were used to identify endoreduplicated cells in the scRNA data19. For these
markers, we used the top 250 ranked genes ranked for each ploidy level. The
signature scores were computed on normalized expression values for each gene
using the monocle3 function “aggregate_gene_expression”, producing a log-scale
signature of ploidy. We used the nearest neighbor approach described above to
transfer this transcriptional signature to scATAC cells. The average expression of
each gene group was computed for each individual cell, and subsequently averaged
per cluster to generate cell type-specific levels of each ploidy signature. To identify

clusters that were more likely to be endoreduplicated, rather than typical diploid
cells, we examined, for each cluster, the ratio of the endoreduplicated signatures
(4N or 8N) relative to the diploid (2N) signature. Clusters with a higher ratio are
more likely to represent endoreduplicated cells. In the second approach (as in
Supplementary Fig. 4A–C), the number of transposition events derived from
scATAC data were used directly to identify endoreduplicated cells. We assumed
that cells containing higher than average cuts per peak were more likely to be
endoreduplicated, as the cut counts for a single peak in a diploid cell should rarely
be above two. A peak with a cut count >2 may indicate an extra copy of the locus
present in that cell. To identify cells more likely to be endoreduplicated, then, we
examined the distribution of cuts per peak for all cells, but found this metric was
strongly correlated with total UMIs per cell. To account for contribution total
UMIs per cell, we used the relationship between the cuts/feature and total UMIs
per cell to compute a Loess model fit (Supplementary Fig. 4B). We then used
residuals of this model as a metric to identify cells that have higher cuts/feature
than would be expected based on their total UMIs. We set an arbitrary threshold of
>1 SD in the distribution of each cell’s deviation from the fit line, and defined
endoreduplicated cells as those beyond the threshold (Supplementary Fig. 4B). For
each cell, a binary designation of endoreduplication was applied based on whether
the cell crossed this threshold.

Metrics for developmental progression. Using the general premise that the
number of unique genes expressed (transcriptional complexity) tends to be reduced
across the developmental trajectory of a cell type as it moves from earlier to later
stages13, we devised a metric to approximate relative differences in developmental
progression among cells. Measuring the number of unique genes expressed is
distinct from measuring the number of UMIs or transcripts captured per cell,
which can vary across cell types. To account for differential recovery of UMIs
across cells in the transcriptional complexity measure, we modeled as a Loess fit the
relationship between total UMIs captured and the number of unique genes
expressed per cell. With this fit, we identified cells that have many more or fewer
unique genes expressed than would be expected for cells over a range of captured
UMIs. Developmental progression for each cell was defined as the residual of each
point in this fit, allowing separation of earlier cells (more unique genes expressed
than would be expected for a given number of captured UMIs) from later cells
(fewer unique genes expressed than would be expected for a given number of
captured UMIs).

A similar analysis as the above was conducted using the scATAC data alone13.
By using the gene activity score matrix (summarizing all transposition events within
each gene, and within 400 bp of its start site), we computed for each cell the total
UMIs normalized by the total number of accessible genes (count ≥ 1). Much like the
transcriptional complexity metric above, we expect this ratio to increase with
developmental progression. As the total number of accessible genes decreases with
developmental time, a larger fraction of UMIs are found in this smaller set of genes.

Motif analysis. Position weight matrices from the comprehensive DAP-seq
dataset27 were used as input into FIMO (v5.0.0)48 to search for significant matches
for each individual TF motif (adjusted p-value threshold <1e−5) in each of the
scATAC peaks. With the output of this motif scan, we generated a matrix that
tallied counts of each individual motif within each peak. Each individual motif in
the DAP-seq dataset27 has an associated TF family, and the counts per peak were
averaged by family. To identify motifs whose counts were significantly associated
with cell type-specific accessibility, we first generated, for each peak, a relative
accessibility score by taking the mean accessibility of that peak in each cell cluster
relative to the overall accessibility of that peak in all clusters. Next, we used a linear
regression framework within Monocle349 to identify individual motifs whose
counts showed strong positive or negative correlations with the cell type-specific
accessibility score in each cell cluster. The effect size of each motif’s contribution to
cell type-specific accessibility is given as the β of the linear regression, shown as a
mean across all transcription factors in the same family.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and
its Supplementary Information files. A reporting summary for this Article is available as
a Supplementary Information file. The dataset generated and analyzed in the current
study is publicly available; raw and processed data, including an R object containing all
accessibility and predicted expression data for each cell, have been uploaded to GEO
under accession GSE173834. Source data underlying Fig. 1a as well as cell annotations
are provided as a Source Data file. Source data are provided with this paper.

Code availability
We have provided R markdown files [https://github.com/mwdorrity/scatac_root] with
code blocks sufficient to complete the primary processing of the data, generation of
scATAC and scRNA co-embedding, analysis of motifs, and identification of
transcription-factor mediated regulatory events.
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